


An Introduction to Aircraft
Structural Analysis

T. H. G. Megson

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Butterworth-Heinemann is an imprint of Elsevier  



Butterworth-Heinemann is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803, USA

The Boulevard, Langford Lane
Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.

The right of T. H. G. Megson to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and
Patents Act 1988.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on
how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our Web site: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods, they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Megson, T.H.G. (Thomas Henry Gordon)

An introduction to aircraft structural analysis / T.H.G. Megson.
p. cm.

Rev. ed. of: Aircraft structures for engineering students / T.H.G. Megson. 4th ed. 2007.
Includes bibliographical references and index.
ISBN 978-1-85617-932-4 (alk. paper)
1. Airframes. 2. Structural analysis (Engineering) I. Title.
TL671.6.M36 2010
629.134’31–dc22

2009050354

For information on all Butterworth-Heinemann publications
visit our Web site at www.elsevierdirect.com

Printed in the United States of America
10 11 12 13 14 10 9 8 7 6 5 4 3 2 1



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

PART A FUNDAMENTALS OF STRUCTURAL ANALYSIS

CHAPTER 1 Basic Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Notation for Forces and Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Equations of Equilibrium .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Plane Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Determination of Stresses on Inclined Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Principal Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Mohr’s Circle of Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.10 Compatibility Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.11 Plane Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.12 Determination of Strains on Inclined Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.13 Principal Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.14 Mohr’s Circle of Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.15 Stress–Strain Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.16 Experimental Measurement of Surface Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 2 Two-Dimensional Problems in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1 Two-Dimensional Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Stress Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Inverse and Semi-Inverse Methods .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 St. Venant’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Bending of an End-Loaded Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CHAPTER 3 Torsion of Solid Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Prandtl Stress Function Solution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 St. Venant Warping Function Solution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 The Membrane Analogy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Torsion of a Narrow Rectangular Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 4 Virtual Work and Energy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Work .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Principle of Virtual Work .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Applications of the Principle of Virtual Work .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

CHAPTER 5 Energy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Strain Energy and Complementary Energy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 The Principle of the Stationary Value of the Total Complementary Energy .. . . . . . . . . . . . . . . . . 113

iii



iv Contents

5.3 Application to Deflection Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Application to the Solution of Statically Indeterminate Systems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Unit Load Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Flexibility Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.7 Total Potential Energy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.8 The Principle of the Stationary Value of the Total Potential Energy .. . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.9 Principle of Superposition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.10 The Reciprocal Theorem ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.11 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

CHAPTER 6 Matrix Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1 Notation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2 Stiffness Matrix for an Elastic Spring .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3 Stiffness Matrix for Two Elastic Springs in Line.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 Matrix Analysis of Pin-jointed Frameworks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5 Application to Statically Indeterminate Frameworks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.6 Matrix Analysis of Space Frames .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.7 Stiffness Matrix for a Uniform Beam... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.8 Finite Element Method for Continuum Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

CHAPTER 7 Bending of Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.1 Pure Bending of Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.2 Plates Subjected to Bending and Twisting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.3 Plates Subjected to a Distributed Transverse Load.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.4 Combined Bending and In-Plane Loading of a Thin Rectangular Plate . . . . . . . . . . . . . . . . . . . . . . . 236
7.5 Bending of Thin Plates Having a Small Initial Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.6 Energy Method for the Bending of Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

CHAPTER 8 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.1 Euler Buckling of Columns .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.2 Inelastic Buckling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.3 Effect of Initial Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.4 Stability of Beams under Transverse and Axial Loads .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.5 Energy Method for the Calculation of Buckling Loads in Columns .. . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.6 Flexural–Torsional Buckling of Thin-Walled Columns .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

CHAPTER 9 Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.1 Buckling of Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.2 Inelastic Buckling of Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.3 Experimental Determination of Critical Load for a Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
9.4 Local Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.5 Instability of Stiffened Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.6 Failure Stress in Plates and Stiffened Panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.7 Tension Field Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320



Contents v

PART B ANALYSIS OF AIRCRAFT STRUCTURES

CHAPTER 10 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.1 Aluminum Alloys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.2 Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.3 Titanium... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.4 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.5 Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.6 Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.7 Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

CHAPTER 11 Structural Components of Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11.1 Loads on Structural Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11.2 Function of Structural Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
11.3 Fabrication of Structural Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
11.4 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

CHAPTER 12 Airworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
12.1 Factors of Safety-Flight Envelope .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
12.2 Load Factor Determination .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

CHAPTER 13 Airframe Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.1 Aircraft Inertia Loads.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.2 Symmetric Maneuver Loads .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
13.3 Normal Accelerations Associated with Various Types of Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . 391
13.4 Gust Loads .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

CHAPTER 14 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
14.1 Safe Life and Fail-Safe Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
14.2 Designing Against Fatigue .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
14.3 Fatigue Strength of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
14.4 Prediction of Aircraft Fatigue Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
14.5 Crack Propagation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
15.1 Symmetrical Bending.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
15.2 Unsymmetrical Bending .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
15.3 Deflections due to Bending .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
15.4 Calculation of Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
15.5 Applicability of Bending Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
15.6 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

CHAPTER 16 Shear of Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
16.1 General Stress, Strain, and Displacement Relationships for Open

and Single Cell Closed Section Thin-Walled Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
16.2 Shear of Open Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483



vi Contents

16.3 Shear of Closed Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

CHAPTER 17 Torsion of Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
17.1 Torsion of Closed Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
17.2 Torsion of Open Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

CHAPTER 18 Combined Open and Closed Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
18.1 Bending .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
18.2 Shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
18.3 Torsion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

CHAPTER 19 Structural Idealization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
19.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
19.2 Idealization of a Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
19.3 Effect of Idealization on the Analysis of Open and Closed Section Beams.. . . . . . . . . . . . . . . . . . 541
19.4 Deflection of Open and Closed Section Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

CHAPTER 20 Wing Spars and Box Beams .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
20.1 Tapered Wing Spar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
20.2 Open and Closed Section Beams.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
20.3 Beams Having Variable Stringer Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

CHAPTER 21 Fuselages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
21.1 Bending .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
21.2 Shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
21.3 Torsion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
21.4 Cutouts in Fuselages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

CHAPTER 22 Wings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
22.1 Three-Boom Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
22.2 Bending .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
22.3 Torsion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
22.4 Shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
22.5 Shear Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
22.6 Tapered Wings.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
22.7 Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
22.8 Cutouts in Wings .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

CHAPTER 23 Fuselage Frames and Wing Ribs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
23.1 Principles of Stiffener/Web Construction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
23.2 Fuselage Frames .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
23.3 Wing Ribs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633



Preface

During my experience of teaching aircraft structures, I have felt the need for a textbook written specif-
ically for students of aeronautical engineering. Although there have been a number of excellent books
written on the subject, they are now either out of date or too specialized in content to fulfill the require-
ments of an undergraduate textbook. With that in mind, I wrote Aircraft Structures for Engineering
Students, the text on which this one is based. Users of that text have supplied many useful comments to
the publisher, including comments that a briefer version of the book might be desirable, particularly for
programs that do not have the time to cover all the material in the “big” book. That feedback, along with
a survey done by the publisher, resulted in this book, An Introduction to Aircraft Structural Analysis,
designed to meet the needs of more time-constrained courses.
Much of the content of this book is similar to that of Aircraft Structures for Engineering Students, but

the chapter on “Vibration of Structures” has been removed since this is most often covered in a separate
standalone course. The topic of Aeroelasticity has also been removed, leaving detailed treatment to the
graduate-level curriculum. The section on “Structural Loading and Discontinuities” remains in the big
book but not this “intro” one. While these topics help develop a deeper understanding of load transfer
and constraint effects in aircraft structures, they are often outside the scope of an undergraduate text.
The reader interested in learning more on those topics should refer to the “big” book. In the interest of
saving space, the appendix on “Design of a Rear Fuselage” is available for download from the book’s
companion Web site. Please visit www.elsevierdirect.com and search on “Megson” to find the Web site
and the downloadable content.
Supplementarymaterials, including solutions to end-of-chapter problems, are available for registered

instructors who adopt this book as a course text. Please visit www.textbooks.elsevier.com for information
and to register for access to these resources.
The help of Tom Lacy, Associate Professor of Mechanical and Aerospace Engineering at Missis-

sippi State University, is gratefully acknowledged in the development of this book.

T.H.G. Megson

Supporting material accompanying this book

A full set of worked solutions for this book are available for teaching purposes.

Please visit www.textbooks.elsevier.com and follow the registration instructions to access this
material, which is intended for use by lecturers and tutors.

vii
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CHAPTER

1Basic Elasticity

We shall consider, in this chapter, the basic ideas and relationships of the theory of elasticity. The
treatment is divided into three broad sections: stress, strain, and stress–strain relationships. The third
section is deferred until the end of the chapter to emphasize that the analysis of stress and strain—for
example, the equations of equilibrium and compatibility—does not assume a particular stress–strain
law. In other words, the relationships derived in Sections 1.1 through 1.14 inclusive are applicable to
nonlinear as well as linear elastic bodies.

1.1 STRESS
Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body is in equilibrium
under the action of externally applied forces P1, P2, . . . , and is assumed to comprise a continuous and
deformable material so that the forces are transmitted throughout its volume. It follows that at any
internal point O, there is a resultant force δP. The particle of material at O subjected to the force δP is
in equilibrium so that there must be an equal but opposite force δP (shown dotted in Fig. 1.1) acting on
the particle at the same time. If we now divide the body by any plane nn containing O, then these two

Fig. 1.1

Internal force at a point in an arbitrarily shaped body.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00001-4 3
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Fig. 1.2

Internal force components at the point O.

forces δP may be considered uniformly distributed over a small area δA of each face of the plane at the
corresponding point O, as in Fig. 1.2. The stress at O is then defined by the equation

Stress= lim
δA→0

δP

δA
(1.1)

The directions of the forces δP in Fig. 1.2 are such that they produce tensile stresses on the faces
of the plane nn. It must be realized here that while the direction of δP is absolute, the choice of plane
is arbitrary so that although the direction of the stress at O will always be in the direction of δP, its
magnitude depends on the actual plane chosen, since a different plane will have a different inclination
and therefore a different value for the area δA. This may be more easily understood by reference to the
bar in simple tension in Fig. 1.3. On the cross-sectional plane mm, the uniform stress is given by P/A,
while on the inclined plane m′m′, the stress is of magnitude P/A′. In both cases, the stresses are parallel
to the direction of P.
Generally, the direction of δP is not normal to the area δA, in which case it is usual to resolve δP

into two components: one, δPn, normal to the plane and the other, δPs, acting in the plane itself (see
Fig. 1.2). Note that in Fig. 1.2 the plane containing δP is perpendicular to δA. The stresses associated
with these components are a normal or direct stress defined as

σ = lim
δA→0

δPn
δA

(1.2)

and a shear stress defined as

τ = lim
δA→0

δPs
δA

(1.3)
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Fig. 1.3

Values of stress on different planes in a uniform bar.

The resultant stress is computed from its components by the normal rules of vector addition, namely

Resultant stress=
√

σ 2+ τ 2

Generally, however, as just indicated, we are interested in the separate effects of σ and τ .
However, to be strictly accurate, stress is not a vector quantity, for, in addition to magnitude and

direction, we must specify the plane on which the stress acts. Stress is therefore a tensor, with its
complete description depending on the two vectors of force and surface of action.

1.2 NOTATION FOR FORCES AND STRESSES
It is usually convenient to refer the state of stress at a point in a body to an orthogonal set of axes
Oxyz. In this case, we cut the body by planes parallel to the direction of the axes. The resultant force
δP acting at the point O on one of these planes may then be resolved into a normal component and two
in-plane components as shown in Fig. 1.4, thereby producing one component of direct stress and two
components of shear stress.
The direct stress component is specified by reference to the plane on which it acts, but the stress

components require a specification of direction in addition to the plane. We therefore allocate a single
subscript to direct stress to denote the plane on which it acts and two subscripts to shear stress, the
first specifying the plane and the second direction. Therefore, in Fig. 1.4, the shear stress components
are τzx and τzy acting on the z plane and in the x and y directions, respectively, while the direct stress
component is σz.
We may now completely describe the state of stress at a point O in a body by specifying components

of shear and direct stresses on the faces of an element of side δx, δy, and δz, formed at O by the cutting
planes as indicated in Fig. 1.5.
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Fig. 1.4

Components of stress at a point in a body.

The sides of the element are infinitesimally small so that the stresses may be assumed to be uni-
formly distributed over the surface of each face. On each of the opposite faces, there will be, to a first
simplification, equal but opposite stresses.
We shall now define the directions of the stresses in Fig. 1.5 as positive so that normal stresses

directed away from their related surfaces are tensile and positive, and opposite compressive stresses
are negative. Shear stresses are positive when they act in the positive direction of the relevant axis in a
plane on which the direct tensile stress is in the positive direction of the axis. If the tensile stress is in
the opposite direction, then positive shear stresses are in directions opposite to the positive directions
of the appropriate axes.
Two types of external forces may act on a body to produce the internal stress systemwe have already

discussed. Of these, surface forces such as P1,P2, . . . , or hydrostatic pressure are distributed over the
surface area of the body. The surface force per unit area may be resolved into components parallel to
our orthogonal system of axes, and these are generally given the symbols X, Y , and Z . The second force
system derives from gravitational and inertia effects, and the forces are known as body forces. These
are distributed over the volume of the body, and the components of body force per unit volume are
designated X, Y , and Z .
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Fig. 1.5

Sign conventions and notation for stresses at a point in a body.

1.3 EQUATIONS OF EQUILIBRIUM
Generally, except in cases of uniform stress, the direct and shear stresses on opposite faces of an element
are not equal as indicated in Fig. 1.5 but differ by small amounts. Therefore if, say, the direct stress
acting on the z plane is σz, then the direct stress acting on the z+δz plane is, from the first two terms of
a Taylor’s series expansion, σz+(∂σz/∂z)δz. We now investigate the equilibrium of an element at some
internal point in an elastic body where the stress system is obtained by the method just described.
In Fig. 1.6, the element is in equilibrium under forces corresponding to the stresses shown and the

components of body forces (not shown). Surface forces acting on the boundary of the body, although
contributing to the production of the internal stress system, do not directly feature in the equilibrium
equations.
Taking moments about an axis through the center of the element parallel to the z axis

τxyδyδz
δx

2
+
(

τxy+ ∂τxy

∂x
δx

)
δyδz

δx

2
− τyxδxδz

δy

2

−
(

τyx + ∂τyx

∂y
δy

)
δxδz

δy

2
= 0
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Fig. 1.6

Stresses on the faces of an element at a point in an elastic body.

which simplifies to

τxyδyδzδx+ ∂τxy

∂x
δyδz

(δx)2

2
− τyxδxδzδy− ∂τyx

∂y
δx δz

(δy)2

2
= 0

Dividing by δxδyδz and taking the limit as δx and δy approach zero.

Similarly,
τxy = τyx
τxz = τzx
τyz = τzy

⎫⎬
⎭ (1.4)

We see, therefore, that a shear stress acting on a given plane (τxy,τxz,τyz) is always accompanied by
an equal complementary shear stress (τyx,τzx ,τzy) acting on a plane perpendicular to the given plane
and in the opposite sense.
Now considering the equilibrium of the element in the x direction(

σx + ∂σx

∂x
δx

)
δyδz− σxδyδz+

(
τyx + ∂τyx

∂y
δy

)
δxδz

− τyxδxδz+
(

τzx + ∂τzx

∂z
δz

)
δxδy

− τzxδxδy+Xδxδyδz = 0
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which gives

∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+X = 0

Or, writing τxy=τyx and τxz=τzx from Eq. (1.4).

Similarly,

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+X = 0

∂σy

∂y
+ ∂τyx

∂x
+ ∂τyz

∂z
+ Y = 0

∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ Z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.5)

The equations of equilibrium must be satisfied at all interior points in a deformable body under a
three-dimensional force system.

1.4 PLANE STRESS
Most aircraft structural components are fabricated from thin metal sheet so that stresses across the
thickness of the sheet are usually negligible. Assuming, say, that the z axis is in the direction of the
thickness, then the three-dimensional case of Section 1.3 reduces to a two-dimensional case in which
σz,τxz, and τyz are all zero. This condition is known as plane stress; the equilibrium equations then
simplify to

∂σx

∂x
+ ∂τxy

∂y
+X = 0

∂σy

∂y
+ ∂τyx

∂x
+ Y = 0

⎫⎪⎪⎬
⎪⎪⎭ (1.6)

1.5 BOUNDARY CONDITIONS
The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system) satisfy the requirements
of equilibrium at all internal points of the body. Equilibrium must also be satisfied at all positions on
the boundary of the body where the components of the surface force per unit area are X, Y , and Z . The
triangular element of Fig. 1.7 at the boundary of a two-dimensional body of unit thickness is then in
equilibrium under the action of surface forces on the elemental length AB of the boundary and internal
forces on internal faces AC and CB.
Summation of forces in the x direction gives

Xδs− σxδy− τyxδx+X 1
2
δxδy= 0
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Fig. 1.7

Stresses on the faces of an element at the boundary of a two-dimensional body.

which, by taking the limit as δx approaches zero, becomes

X = σx
dy

ds
+ τyx

dx

ds

The derivatives dy/ds and dx/ds are the direction cosines l and m of the angles that a normal to AB
makes with the x and y axes, respectively. It follows that

X = σxl+ τyxm

and in a similar manner,

Y = σym+ τxyl

A relatively simple extension of this analysis produces the boundary conditions for a three-
dimensional body, namely

X = σxl+ τyxm+ τzxn

Y = σym+ τxyl+ τzyn

Z = σzn+ τyzm+ τxzl

⎫⎪⎬
⎪⎭ (1.7)

where l, m, and n become the direction cosines of the angles that a normal to the surface of the body
makes with the x,y, and z axes, respectively.

1.6 DETERMINATION OF STRESSES ON INCLINED PLANES
The complex stress system of Fig. 1.6 is derived from a consideration of the actual loads applied to a
body and is referred to a predetermined, though arbitrary, system of axes. The values of these stresses
may not give a true picture of the severity of stress at that point, so it is necessary to investigate the
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Fig. 1.8

(a) Stresses on a two-dimensional element; (b) stresses on an inclined plane at the point.

state of stress on other planes on which the direct and shear stresses may be greater. We shall restrict
the analysis to the two-dimensional system of plane stress defined in Section 1.4.
Figure 1.8(a) shows a complex stress system at a point in a body referred to axes Ox, Oy. All

stresses are positive as defined in Section 1.2. The shear stresses τxy and τyx were shown to be equal in
Section 1.3. We now, therefore, designate them both τxy. The element of side δx,δy and of unit thickness
is small, so stress distributions over the sides of the element may be assumed to be uniform. Body forces
are ignored, since their contribution is a second-order term.
Suppose that we want to find the state of stress on a plane AB inclined at an angle θ to the vertical.

The triangular element EDC formed by the plane and the vertical through E is in equilibrium under the
action of the forces corresponding to the stresses shown in Fig. 1.8(b), where σn and τ are the direct
and shear components of the resultant stress on AB. Then, resolving forces in a direction perpendicular
to ED, we have

σnED= σxECcosθ + σyCDsinθ + τxyECsinθ + τxyCDcosθ

Dividing by ED and simplifying

σn = σx cos
2 θ + σy sin

2 θ + τxy sin2θ (1.8)

Now resolving forces parallel to ED,

τED= σxECsinθ − σyCDcosθ − τxyECcosθ + τxyCDsinθ

Again dividing by ED and simplifying,

τ = (σx − σy)

2
sin2θ − τxy cos2θ (1.9)
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Example 1.1
A cylindrical pressure vessel has an internal diameter of 2m and is fabricated from plates 20mm thick.
If the pressure inside the vessel is 1.5N/mm2 and, in addition, the vessel is subjected to an axial tensile
load of 2500kN, calculate the direct and shear stresses on a plane inclined at an angle of 60◦ to the axis
of the vessel. Calculate also the maximum shear stress.

The expressions for the longitudinal and circumferential stresses produced by the internal pressure
may be found in any text on stress analysis and are

Longitudinal stress (σx) = pd

4t
= 1.5× 2× 103/4× 20= 37.5N/mm2

Circumferential stress (σy) = pd

2t
= 1.5× 2× 103/2× 20= 75N/mm2

The direct stress due to the axial load contributes to σx and is given by

σx (axial load) = 2500× 103/π × 2× 103× 20= 19.9N/mm2

A rectangular element in the wall of the pressure vessel is then subjected to the stress system shown in
Fig. 1.9. Note that there are no shear stresses acting on the x and y planes; in this case, σx and σy then
form a biaxial stress system.
The direct stress, σn, and shear stress, τ , on the plane AB that makes an angle of 60◦ with the axis of

the vessel may be found from first principles by considering the equilibrium of the triangular element
ABC or by direct substitution in Eqs. (1.8) and (1.9). Note that in the latter case, θ =30◦ and τxy=0.
Then,

σn = 57.4cos2 30◦ + 75sin2 30◦ = 61.8N/mm2
τ = (57.4− 75)(sin(2× 30◦))/2= −7.6N/mm2

Fig. 1.9

Element of Example 1.1.
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The negative sign for τ indicates that the shear stress is in the direction BA and not in AB.
From Eq. (1.9) when τxy=0,

τ = (σx − σy)(sin2θ)/2 (i)

The maximum value of τ therefore occurs when sin2θ is a maximum—that is, when sin2θ =1 and
θ =45◦. Then, substituting the values of σx and σy in Eq. (i),

τmax = (57.4− 75)/2= −8.8N/mm2

Example 1.2
A cantilever beam of solid, circular cross section supports a compressive load of 50kN applied to its
free end at a point 1.5mm below a horizontal diameter in the vertical plane of symmetry together with
a torque of 1200Nm (Fig. 1.10). Calculate the direct and shear stresses on a plane inclined at 60◦ to the
axis of the cantilever at a point on the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of 50kN together with a bending moment
of 50×103×1.5=75000N/mm in a vertical plane. Therefore, at any point on the lower edge of the
vertical plane of symmetry, there are compressive stresses due to the axial load and bending moment
which act on planes perpendicular to the axis of the beam and are given, respectively, by Eqs. (1.2) and
(15.9):

σx (axial load) = 50× 103/π × (602/4) = 17.7N/mm2
σx (bending moment) = 75000× 30/π × (604/64) = 3.5N/mm2

The shear stress, τxy, at the same point due to the torque is obtained from Eq. (iv) in Example 3.1,
that is,

τxy = 1200× 103× 30/π × (604/32) = 28.3N/mm2

Fig. 1.10

Cantilever beam of Example 1.2.
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Fig. 1.11

Stress system on two-dimensional element of the beam of Example 1.2.

The stress system acting on a two-dimensional rectangular element at the point is shown in Fig. 1.11.
Note that since the element is positioned at the bottom of the beam, the shear stress due to the torque is
in the direction shown and is negative (see Fig. 1.8).
Again σn and τ may be found from first principles or by direct substitution in Eqs. (1.8) and (1.9).

Note that θ =30◦, σy=0, and τxy=−28.3N/mm2, the negative sign is arising from the fact that it is in
the opposite direction to τxy as in Fig. 1.8.
Then,

σn = −21.2cos2 30◦ − 28.3sin60◦ = −40.4N/mm2 (compression)
τ = (−21.2/2)sin60◦ + 28.3cos60◦ = 5.0N/mm2 (acting in the direction AB)

Different answers would have been obtained if the plane AB had been chosen on the opposite side
of AC.

1.7 PRINCIPAL STRESSES
For given values of σx,σy, and τxy, in other words given loading conditions, σn varies with the angle θ

and attains a maximum or minimum value when dσn/dθ =0. From Eq. (1.8),
dσn
dθ

= −2σx cosθ sinθ + 2σy sinθ cosθ + 2τxy cos2θ = 0
Hence,

−(σx − σy)sin2θ + 2τxy cos2θ = 0
or

tan2θ = 2τxy
σx − σy

(1.10)
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Two solutions, θ and θ +π/2, are obtained from Eq. (1.10) so that there are two mutually perpen-
dicular planes on which the direct stress is either a maximum or a minimum. Further, by comparing
Eqs. (1.9) and (1.10), it will be observed that these planes correspond to those on which there is no
shear stress. The direct stresses on these planes are called principal stresses, and the planes themselves
are called principal planes.
From Eq. (1.10),

sin2θ = 2τxy√
(σx − σy)2+ 4τ 2xy

cos2θ = σx − σy√
(σx − σy)2+ 4τ 2xy

and

sin2(θ + π/2) = −2τxy√
(σx − σy)2+ 4τ 2xy

cos2(θ + π/2) = −(σx − σy)√
(σx − σy)2+ 4τ 2xy

Rewriting Eq. (1.8) as

σn = σx

2
(1+ cos2θ) + σy

2
(1− cos2θ) + τxy sin2θ

and substituting for {sin2θ , cos2θ} and {sin2(θ +π/2), cos2(θ +π/2)} in turn gives

σI = σx + σy

2
+ 1

2

√
(σx − σy)2+ 4τ 2xy (1.11)

and

σII = σx + σy

2
− 1

2

√
(σx − σy)2+ 4τ 2xy (1.12)

where σI is the maximum or major principal stress and σII is the minimum or minor principal stress.
Note that σI is algebraically the greatest direct stress at the point, while σII is algebraically the least.
Therefore, when σII is negative—that is, compressive—it is possible for σII to be numerically greater
than σI.
The maximum shear stress at this point in the body may be determined in an identical manner. From

Eq. (1.9),

dτ

dθ
= (σx − σy)cos2θ + 2τxy sin2θ = 0

giving

tan2θ = − (σx − σy)

2τxy
(1.13)
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It follows that

sin2θ = −(σx − σy)√
(σx − σy)2+ 4τ 2xy

cos2θ = 2τxy√
(σx − σy)2+ 4τ 2xy

sin2(θ + π/2) = (σx − σy)√
(σx − σy)2+ 4τ 2xy

cos2(θ + π/2) = −2τxy√
(σx − σy)2+ 4τ 2xy

Substituting these values in Eq. (1.9) gives

τmax,min = ±1
2

√
(σx − σy)2+ 4τ 2xy (1.14)

Here, as in the case of principal stresses, we take the maximum value as being the greater algebraic
value.
Comparing Eq. (1.14) with Eqs. (1.11) and (1.12), we see that

τmax = σI− σII

2
(1.15)

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body in the plane of
the given stresses. For a three-dimensional body supporting a two-dimensional stress system, this is not
necessarily the maximum shear stress at the point.
Since Eq. (1.13) is the negative reciprocal of Eq. (1.10), then the angles 2θ given by these two

equations differ by 90◦, or the planes of maximum shear stress are inclined at 45◦ to the principal
planes.

1.8 MOHR’S CIRCLE OF STRESS
The state of stress at a point in a deformable body may be determined graphically by Mohr’s circle of
stress.
In Section 1.6, the direct and shear stresses on an inclined plane were given by

σn = σx cos
2 θ + σy sin

2 θ + τxy sin2θ (Eq. (1.8))

and

τ = (σx − σy)

2
sin2θ − τxy cos2θ (Eq. (1.9))

respectively. The positive directions of these stresses and the angle θ are defined in Fig. 1.12(a).
Equation (1.8) may be rewritten in the form

σn = σx

2
(1+ cos2θ) + σy

2
(1− cos2θ) + τxy sin2θ
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Fig. 1.12

(a) Stresses on a triangular element; (b) Mohr’s circle of stress for stress system shown in (a).

or

σn− 1

2
(σx + σy) = 1

2
(σx − σy)cos2θ + τxy sin2θ

Squaring and adding this equation to Eq. (1.9), we obtain[
σn− 1

2
(σx + σy)

]2
+ τ 2 =

[
1

2
(σx − σy)

]2
+ τ 2xy

which represents the equation of a circle of radius 12

√
(σx−σy)2+4τ 2xy and having its center at the point

((σx−σy)/2, 0).
The circle is constructed by locating the points Q1(σx ,τxy) and Q2(σy,−τxy) referred to axes Oστ as

shown in Fig. 1.12(b). The center of the circle then lies at C the intersection of Q1Q2 and the Oσ axis;

clearly C is the point ((σx−σy)/2, 0), and the radius of the circle is 12

√
(σx−σy)2+4τ 2xy as required.

CQ′ is now set off at an angle 2θ (positive clockwise) to CQ1, and Q′ is then the point (σn,−τ ) as
demonstrated in the following. From Fig. 1.12(b), we see that

ON = OC+CN
or since OC=(σx+σy)/2, CN=CQ′ cos(β −2θ), and CQ′ =CQ1, we have

σn = σx + σy

2
+CQ1(cosβ cos2θ + sinβ sin2θ)

But

CQ1 = CP1
cosβ

and CP1 = (σx − σy)

2
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Hence,

σn = σx + σy

2
+
(

σx − σy

2

)
cos2θ +CP1 tanβ sin2θ

which, on rearranging, becomes

σn = σx cos
2 θ + σy sin

2 θ + τxy sin2θ

as in Eq. (1.8). Similarly, it may be shown that

Q′N = τxy cos2θ −
(

σx − σy

2

)
sin2θ = −τ

as in Eq. (1.9). Note that the construction of Fig. 1.12(b) corresponds to the stress system of Fig. 1.12(a)
so that any sign reversal must be allowed for. Also, the Oσ and Oτ axes must be constructed to the
same scale, or the equation of the circle is not represented.
The maximum and minimum values of the direct stress—that is, the major and minor principal

stresses σI and σII—occur when N and Q′ coincide with B and A, respectively. Thus,

σ1 = OC+ radius of circle

= (σx + σy)

2
+
√
CP21 + P1Q21

or

σI = (σx + σy)

2
+ 1

2

√
(σx − σy)2+ 4τ 2xy

and in the same fashion

σII = (σx + σy)

2
− 1

2

√
(σx − σy)2+ 4τ 2xy

The principal planes are then given by 2θ =β(σI) and 2θ =β +π(σII).
Also the maximum and minimum values of shear stress occur when Q′ coincides with D and E at

the upper and lower extremities of the circle.
At these points, Q′N is equal to the radius of the circle which is given by

CQ1 =
√

(σx − σy)2

4
+ τ 2xy

Hence τmax,min= ±12
√

(σx−σy)2+4τ 2xy as before. The planes ofmaximumandminimumshear stresses
are given by 2θ =β +π/2 and 2θ =β +3π/2, these being inclined at 45◦ to the principal planes.

Example 1.3
Direct stresses of 160N/mm2 (tension) and 120N/mm2 (compression) are applied at a particular point in
an elastic material on two mutually perpendicular planes. The principal stress in the material is limited
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to 200N/mm2 (tension). Calculate the allowable value of shear stress at the point on the given planes.
Determine also the value of the other principal stress and the maximum value of shear stress at the point.
Verify your answer using Mohr’s circle.

The stress system at the point in thematerial may be represented as shown in Fig. 1.13 by considering
the stresses to act uniformly over the sides of a triangular element ABC of unit thickness. Suppose
that the direct stress on the principal plane AB is σ . For horizontal equilibrium of the element,

σABcosθ = σxBC+ τxyAC

which simplifies to

τxy tanθ = σ − σx (i)

Considering vertical equilibrium gives

σABsinθ = σyAC+ τxyBC

or

τxy cot θ = σ − σy (ii)

Hence, from the product of Eqs. (i) and (ii),

τ 2xy = (σ − σx)(σ − σy)

Now substituting the values σx=160N/mm2, σy=−120N/mm2, and σ =σ1= 200N/mm2, we have
τxy=±113N/mm2

Replacing cot θ in Eq. (ii) by 1/tan θ from Eq. (i) yields a quadratic equation in σ

σ 2− σ(σx − σy) + σxσy− τ 2xy = 0 (iii)

Fig. 1.13

Stress system for Example 1.3.
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Fig. 1.14

Solution of Example 1.3 using Mohr’s circle of stress.

The numerical solutions of Eq. (iii) corresponding to the given values of σx,σy, and τxy are the principal
stresses at the point, namely

σ1 = 200N/mm2 (given) σII = −160N/mm2

Having obtained the principal stresses, we now use Eq. (1.15) to find the maximum shear stress,
thus,

τmax = 200+ 160
2

= 180N/mm2

The solution is rapidly verified fromMohr’s circle of stress (Fig. 1.14). From the arbitrary origin O,
OP1 and OP2 are drawn to represent σx=160N/mm2 and σy=−120N/mm2. The midpoint C of P1P2
is then located. OB=σ1=200N/mm2 is marked out, and the radius of the circle is then CB. OA is the
required principal stress. Perpendiculars P1Q1 and P2Q2 to the circumference of the circle are equal to
±τxy (to scale), and the radius of the circle is the maximum shear stress.

1.9 STRAIN
The external and internal forces described in the previous sections cause linear and angular displace-
ments in a deformable body. These displacements are generally defined in terms of strain. Longitudinal
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or direct strains are associated with direct stresses σ and relate to changes in length, while shear
strains define changes in angle produced by shear stresses. These strains are designated, with appro-
priate suffixes, by the symbols ε and γ , respectively, and have the same sign as the associated
stresses.
Consider three mutually perpendicular line elements OA, OB, and OC at a point O in a deformable

body. Their original or unstrained lengths are δx,δy, and δz, respectively. If, now, the body is subjected
to forces that produce a complex system of direct and shear stresses at O, such as that in Fig. 1.6, then
the line elements deform to the positions O′A′, O′B′, and O′C′ as shown in Fig. 1.15.
The coordinates of O in the unstrained body are (x,y,z) so that those of A, B, and C are (x+δx,y,z),

(x,y+δy,z), and (x,y,z+δz). The components of the displacement of O to O′ parallel to the x,y, and
z axes are u,v, and w. These symbols are used to designate these displacements throughout the book
and are defined as positive in the positive directions of the axes. We again use the first two terms of a
Taylor’s series expansion to determine the components of the displacements of A, B, and C. Thus, the
displacement of A in a direction parallel to the x axis is u+(∂u/∂x)δx. The remaining components are
found in an identical manner and are shown in Fig. 1.15.
We now define direct strain in more quantitative terms. If a line element of length L at a point in a

body suffers a change in length�L, then the longitudinal strain at that point in the body in the direction

Fig. 1.15

Displacement of line elements OA, OB, and OC.
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of the line element is

ε = lim
L→0

�L

L

The change in length of the element OA is (O′A′ −OA) so that the direct strain at O in the x direction
is obtained from the equation

εx = O′A′ −OA
OA

= O′A′ − δx

δx
(1.16)

Now,

(O′A′)2 =
(

δx+ u+ ∂u

∂x
δx− u

)2
+
(
v+ ∂v

∂x
δx− v

)2
+
(
w+ ∂w

∂x
δx−w

)2
or

O′A′ = δx

√(
1+ ∂u

∂x

)2
+
(

∂v

∂x

)2
+
(

∂w

∂x

)2

which may be written when second-order terms are neglected

O′A′ = δx

(
1+ 2∂u

∂x

) 1
2

Applying the binomial expansion to this expression, we have

O′A′ = δx

(
1+ ∂u

∂x

)
(1.17)

in which squares and higher powers of ∂u/∂x are ignored. Substituting for O′A′ in Eq. (1.16), we have

It follows that

εx = ∂u

∂x

εy = ∂v

∂y

εz = ∂w

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.18)

The shear strain at a point in a body is defined as the change in the angle between two mutually
perpendicular lines at the point. Therefore, if the shear strain in the xz plane is γxz, then the angle
between the displaced line elements O′A′ and O′C′ in Fig. 1.15 is π/2−γxz radians.
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Now cosA′O′C′ =cos(π/2−γxz)=sinγxz, and as γxz is small, then cos A′O′C′ =γxz. From the
trigonometrical relationships for a triangle,

cosA′O′C′ = (O′A′)2+ (O′C′)2− (A′C′)
2(O′A′)(O′C′)

2

(1.19)

We have previously shown, in Eq. (1.17), that

O′A′ = δx

(
1+ ∂u

∂x

)
Similarly,

O′C′ = δz

(
1+ ∂w

∂z

)
But for small displacements, the derivatives of u, v, and w are small compared with l so that, as we are
concerned here with actual length rather than change in length, we may use the approximations

O′A′ ≈ δx O′C′ ≈ δz

Again to a first approximation,

(A′C′)2 =
(

δz− ∂w

∂x
δx

)2
+
(

δx− ∂u

∂z
δz

)2
Substituting for O′A′, O′C′, and A′C′ in Eq. (1.19), we have

cosA′O′C′ = (δx2) + (δz)2− [δz− (∂w/∂x)δx]2− [δx− (∂u/∂z)δz]2

2δxδz

Expanding and neglecting fourth-order powers give

cosA′O′C′ = 2(∂w/∂x)δxδz+ 2(∂u/∂z)δxδz
2δxδz

Similarly,

γxz = ∂w

∂x
+ ∂u

∂z

γxy = ∂v

∂x
+ ∂u

∂y

γyz = ∂w

∂y
+ ∂v

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.20)

Itmust be emphasized thatEqs. (1.18) and (1.20) are derivedon the assumption that the displacements
involved are small. Normally, these linearized equations are adequate for most types of structural
problem, but in cases where deflections are large—for example, types of suspension cable, and so on—
the full, nonlinear, large deflection equations, given in many books on elasticity, must be used.
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1.10 COMPATIBILITY EQUATIONS
In Section 1.9, we expressed the six components of strain at a point in a deformable body in terms of the
three components of displacement at that point, u, v, and w. We have supposed that the body remains
continuous during the deformation so that no voids are formed. It follows that each component, u, v,
and w, must be a continuous, single-valued function or, in quantitative terms,

u= f1(x,y,z) v= f2(x,y,z) w= f3(x,y,z)
If voids were formed, then displacements in regions of the body separated by the voids would be

expressed as different functions of x, y, and z. The existence, therefore, of just three single-valued
functions for displacement is an expression of the continuity or compatibility of displacement which
we have presupposed.
Since the six strains are defined in terms of three displacement functions, then they must bear some

relationship to each other and cannot have arbitrary values. These relationships are found as follows.
Differentiating γxy from Eq. (1.20) with respect to x and y gives

∂2γxy

∂x ∂y
= ∂2

∂x ∂y

∂v

∂x
+ ∂2

∂x ∂y

∂u

∂y

or since the functions of u and v are continuous,

∂2γxy

∂x ∂y
= ∂2

∂x2
∂v

∂y
+ ∂2

∂y2
∂u

∂x

which may be written, using Eq. (1.18)

∂2γxy

∂x ∂y
= ∂2εy

∂x2
+ ∂2εx

∂y2
(1.21)

In a similar manner,

∂2γyz

∂y∂z
= ∂2εy

∂z2
+ ∂2εz

∂y2
(1.22)

∂2γxz

∂x ∂z
= ∂2εz

∂x2
+ ∂2εx

∂z2
(1.23)

If we now differentiate γxy with respect to x and z and add the result to γzx, differentiated with respect
to y and x, we obtain

∂2γxy

∂x ∂z
+ ∂2γxz

∂y∂x
= ∂2

∂x ∂z

(
∂u

∂y
+ ∂v

∂x

)
+ ∂2

∂y∂x

(
∂w

∂x
+ ∂u

∂z

)
or

∂

∂x

(
∂γxy

∂z
+ ∂γxz

∂y

)
= ∂2

∂z∂y

∂u

∂x
+ ∂2

∂x2

(
∂v

∂z
+ ∂w

∂y

)
+ ∂2

∂y∂z

∂u

∂x
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Substituting from Eqs. (1.18) and (1.21) and rearranging,

2
∂2εx

∂y∂z
= ∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y
+ ∂γxy

∂z

)
(1.24)

Similarly,

2
∂2εy

∂x ∂z
= ∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y
+ ∂γxy

∂z

)
(1.25)

and

2
∂2εz

∂x ∂y
= ∂

∂z

(
∂γyz

∂x
+ ∂γxz

∂y
− ∂γxy

∂z

)
(1.26)

Equations (1.21) through (1.26) are the six equations of strain compatibility which must be satisfied in
the solution of three-dimensional problems in elasticity.

1.11 PLANE STRAIN
Although we have derived the compatibility equations and the expressions for strain for the general
three-dimensional state of strain, we shall bemainly concernedwith the two-dimensional case described
in Section 1.4. The corresponding state of strain, in which it is assumed that particles of the body suffer
displacements in one plane only, is known as plane strain. We shall suppose that this plane is, as for
plane stress, the xy plane. Then, εz,γxz, and γyz become zero, and Eqs. (1.18) and (1.20) reduce to

εx = ∂u

∂x
εy = ∂v

∂y
(1.27)

and

γxy = ∂v

∂x
+ ∂u

∂y
(1.28)

Further, by substituting εz=γxz=γyz=0 in the six equations of compatibility and noting that εx ,εy,
and γxy are now purely functions of x and y, we are left with Eq. (1.21), namely

∂2γxy

∂x ∂y
= ∂2εy

∂x2
+ ∂2εx

∂y2

as the only equation of compatibility in the two-dimensional or plane strain case.

1.12 DETERMINATION OF STRAINS ON INCLINED PLANES
Having defined the strain at a point in a deformable body with reference to an arbitrary system of
coordinate axes, we may calculate direct strains in any given direction and the change in the angle
(shear strain) between any two originally perpendicular directions at that point. We shall consider the
two-dimensional case of plane strain described in Section 1.11.
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Fig. 1.16

(a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a).

An element in a two-dimensional body subjected to the complex stress system of Fig. 1.16(a) distorts
into the shape shown in Fig. 1.16(b). In particular, the triangular element ECD suffers distortion to the
shape E′C′D′ with corresponding changes in the length FC and angle EFC. Suppose that the known
direct and shear strains associatedwith the given stress system are εx,εy, and γxy (the actual relationships
will be investigated later) and that we want to find the direct strain εn in a direction normal to the plane
ED and the shear strain γ produced by the shear stress acting on the plane ED.
To a first order of approximation,

C′D′ = CD(1+ εx)

C′E′ = CE(1+ εy)

E′D′ = ED(1+ εn+π/2)

⎫⎪⎬
⎪⎭ (1.29)

where εn+π/2 is the direct strain in the direction ED. From the geometry of the triangle E′C′D′ in which
angle E′C′D′ =π/2−γxy,

(E′D′)2 = (C′D′)2+ (C′E′)2− 2(C′D′)(C′E′)cos(π/2− γxy)

or substituting from Eqs. (1.29),

(ED)2(1+ εn+π/2)
2 = (CD)2(1+ εx)

2+ (CE)2(1+ εy)
2

− 2(CD)(CE)(1+ εx)(1+ εy)sinγxy

Noting that (ED)2= (CD)2+ (CE)2 and neglecting squares and higher powers of small quantities, this
equation may be rewritten as

2(ED)2εn+π/2 = 2(CD)2εx + 2(CE)2εy− 2(CE)(CD)γxy

Dividing by 2(ED)2 gives

εn+π/2 = εx sin
2 θ + εy cos

2 θ − cosθ sinθγxy (1.30)
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The strain εn in the direction normal to the plane ED is found by replacing the angle θ in Eq. (1.30) by
θ −π/2. Hence,

εn = εx cos
2 θ + εy sin

2 θ + γxy

2
sin2θ (1.31)

Turning our attention now to the triangle C′F′E′, we have

(C′E′)2 = (C′F′)2+ (F′E′)2− 2(C′F′)(F′E′)cos(π/2− γ ) (1.32)

in which

C′E′ = CE(1+ εy)

C′F′ = CF(1+ εn)

F′E′ = FE(1+ εn+π/2)

Substituting for C′E′, C′F′, and F′E′ in Eq. (1.32) and writing cos(π/2−γ )= sinγ , we find

(CE)2(1+ εy)
2 =(CF)2(1+ εn)

2+ (FE)2(1+ εn+π/2)
2

− 2(CF)(FE)(1+ εn)(1+ εn+π/2)sinγ
(1.33)

All the strains are assumed to be small so that their squares and higher powers may be ignored. Further,
sinγ ≈γ and Eq. (1.33) becomes

(CE)2(1+ 2εy) = (CF)2(1+ 2εn) + (FE)2(1+ 2εn+π/2) − 2(CF)(FE)γ

From Fig. 1.16(a), (CE)2= (CF)2+ (FE)2 and the preceding equation simplifies to
2(CE)2εy = 2(CF)2εn+ 2(FE)2εn+π/2− 2(CF)(FE)γ

Dividing by 2(CE)2 and transposing,

γ = εn sin2 θ + εn+π/2 cos2 θ − εy

sinθ cosθ

Substitution of εn+π/2 and εn from Eqs. (1.30) and (1.31) yields

γ

2
= (εx − εy)

2
sin2θ − γxy

2
cos2θ (1.34)

1.13 PRINCIPAL STRAINS
Ifwe compareEqs. (1.31) and (1.34)withEqs. (1.8) and (1.9),we observe that theymay be obtained from
Eqs. (1.8) and (1.9) by replacing σn by εn, σx by εx,σy by εy,τxy by γxy/2, and τ by γ/2. Therefore, for
each deduction made from Eqs. (1.8) and (1.9) concerning σn and τ , there is a corresponding deduction
from Eqs. (1.31) and (1.34) regarding εn and γ/2.
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Therefore, at a point in a deformable body, there are two mutually perpendicular planes on which
the shear strain γ is zero and normal to which the direct strain is a maximum or minimum. These strains
are the principal strains at that point and are given (from comparison with Eqs. (1.11) and (1.12)) by

εI = εx + εy

2
+ 1

2

√
(εx − εy)2+ γ 2xy (1.35)

and

εII = εx + εy

2
− 1

2

√
(εx − εy)2+ γ 2xy (1.36)

If the shear strain is zero on these planes, it follows that the shear stress must also be zero, and we
deduce, from Section 1.7, that the directions of the principal strains and principal stresses coincide. The
related planes are then determined from Eq. (1.10) or from

tan2θ = γxy

εx − εy
(1.37)

In addition, the maximum shear strain at the point is(γ

2

)
max

= 1
2

√
(εx − εy)2+ γ 2xy (1.38)

or (γ

2

)
max

= εI− εII

2
(1.39)

(cf. Eqs. (1.14) and (1.15)).

1.14 MOHR’S CIRCLE OF STRAIN
We now apply the arguments of Section 1.13 to the Mohr’s circle of stress described in Section 1.8.
A circle of strain, analogous to that shown in Fig. 1.12(b), may be drawn when σx,σy, and so on are
replaced by εx, εy, and so on, as specified in Section 1.13. The horizontal extremities of the circle
represent the principal strains, the radius of the circle, half the maximum shear strain, and so on.

1.15 STRESS–STRAIN RELATIONSHIPS
In the preceding sections, we have developed, for a three-dimensional deformable body, three equations
of equilibrium (Eqs. (1.5)) and six strain–displacement relationships (Eqs. (1.18) and (1.20)). From
the latter, we eliminated displacements, thereby deriving six auxiliary equations relating strains. These
compatibility equations are an expression of the continuity of displacement which we have assumed
as a prerequisite of the analysis. At this stage, therefore, we have obtained nine independent equations
toward the solution of the three-dimensional stress problem. However, the number of unknowns totals
15, comprising six stresses, six strains, and three displacements.An additional six equations are therefore
necessary to obtain a solution.
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So far we have made no assumptions regarding the force–displacement or stress–strain relationship
in the body. This will, in fact, provide us with the required six equations, but before these are derived,
it is worthwhile to consider some general aspects of the analysis.
The derivation of the equilibrium, strain–displacement, and compatibility equations does not involve

any assumption as to the stress–strain behavior of the material of the body. It follows that these basic
equations are applicable to any type of continuous, deformable body nomatter how complex its behavior
under stress. In fact, we shall consider only the simple case of linearly elastic isotropic materials for
which stress is directly proportional to strain and whose elastic properties are the same in all directions.
A material possessing the same properties at all points is said to be homogeneous.
Particular cases arise where some of the stress components are known to be zero, and the number

of unknowns may then be no greater than the remaining equilibrium equations that have not identically
vanished. The unknown stresses are then found from the conditions of equilibrium alone, and the
problem is said to be statically determinate. For example, the uniform stress in the member supporting
a tensile load P in Fig. 1.3 is found by applying one equation of equilibrium and a boundary condition.
This system is therefore statically determinate.
Statically indeterminate systems require the use of some, if not all, of the other equations involving

strain–displacement and stress–strain relationships. However, whether the system is statically deter-
minate or not, stress–strain relationships are necessary to determine deflections. The role of the six
auxiliary compatibility equations will be discussed when actual elasticity problems are formulated in
Chapter 2.
We now proceed to investigate the relationship of stress and strain in a three-dimensional, linearly

elastic, isotropic body.
Experiments show that the application of a uniform direct stress, say σx , does not produce any shear

distortion of the material and that the direct strain εx is given by the equation

εx = σx

E
(1.40)

where E is a constant known as the modulus of elasticity or Young’s modulus. Equation (1.40) is an
expression of Hooke’s law. Further, εx is accompanied by lateral strains

εy = −ν
σx

E
εz = −ν

σx

E
(1.41)

in which ν is a constant termed Poisson’s ratio.
For a body subjected to direct stresses σx,σy, and σz, the direct strains are from Eqs. (1.40) and

(1.41) and the principle of superposition (see Chapter 5, Section 5.9)

εx = 1

E
[σx − ν(σy+ σz)]

εy = 1

E
[σy− ν(σx + σz)]

εz = 1

E
[σz − ν(σx + σy)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.42)
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Equations (1.42) may be transposed to obtain expressions for each stress in terms of the strains. The
procedure adopted may be any of the standard mathematical approaches and gives

σx = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εx (1.43)

σy = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εy (1.44)

σz = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εz (1.45)

in which

e= εx + εy+ εz (see Eq. (1.53))

For the case of plane stress in which σz=0, Eqs. (1.43) and (1.44) reduce to

σx = E

1− ν2
(εx + νεy) (1.46)

σy = E

1− ν2
(εy+ νεx) (1.47)

Suppose now that at some arbitrary point in a material, there are principal strains εI and εII cor-
responding to principal stresses σI and σII. If these stresses (and strains) are in the direction of the
coordinate axes x and y, respectively, then τxy=γxy=0, and from Eq. (1.34), the shear strain on an
arbitrary plane at the point inclined at an angle θ to the principal planes is

γ = (εI− εII)sin2θ (1.48)

Using the relationships of Eqs. (1.42) and substituting in Eq. (1.48), we have

γ = 1

E
[(σI− νσII) − (σII− νσI)] sin2θ

or

γ = (1+ ν)

E
(σI− σII)sin2θ (1.49)

Using Eq. (1.9) and noting that for this particular case τxy=0,σx=σI, and σy=σII,

2τ = (σI− σII)sin2θ

from which we may rewrite Eq. (1.49) in terms of τ as

γ = 2(1+ ν)

E
τ (1.50)

The term E/2(1+ν) is a constant known as the modulus of rigidity G. Hence,

γ = τ/G
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and the shear strains γxy,γxz, and γyz are expressed in terms of their associated shear stresses as follows:

γxy = τxy

G
γxz = τxz

G
γyz = τyz

G
(1.51)

Equations (1.51), togetherwithEqs. (1.42), provide the additional six equations required to determine
the 15 unknowns in a general three-dimensional problem in elasticity. They are, however, limited in use
to a linearly elastic isotropic body.
For the case of plane stress, they simplify to

εx = 1

E
(σx − νσy)

εy = 1

E
(σy− νσx)

εz = −ν

E
(σx − σy)

γxy = τxy

G

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.52)

It may be seen from the third of Eqs. (1.52) that the conditions of plane stress and plane strain do not
necessarily describe identical situations.
Changes in the linear dimensions of a strained body may lead to a change in volume. Suppose that

a small element of a body has dimensions δx,δy, and δz. When subjected to a three-dimensional stress
system, the element sustains a volumetric strain e (change in volume/unit volume) equal to

e= (1+ εx)δx(1+ εy)δy(1+ εz)δz− δxδyδz

δxδyδz

Neglecting products of small quantities in the expansion of the right-hand side of the preceding equation
yields

e= εx + εy+ εz (1.53)

Substituting for εx ,εy, and εz from Eqs. (1.42), we find for a linearly elastic, isotropic body

e= 1

E
[σx + σy+ σz − 2ν(σx + σy+ σz)]

or

e= (1− 2ν)

E
(σx + σy+ σz)

In the case of a uniform hydrostatic pressure, σx=σy=σz=−p and

e= −3(1− 2ν)

E
p (1.54)

The constant E/3(1−2ν) is known as the bulk modulus ormodulus of volume expansion and is often
given the symbol K .
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An examination of Eq. (1.54) shows that ν ≤0.5, since a body cannot increase in volume under
pressure. Also, the lateral dimensions of a body subjected to uniaxial tension cannot increase so that
ν >0. Therefore, for an isotropic material 0≤ν ≤0.5 and for most isotropic materials, ν is in the range
0.25 to 0.33 below the elastic limit. Above the limit of proportionality, ν increases and approaches 0.5.

Example 1.4
A rectangular element in a linearly elastic isotropic material is subjected to tensile stresses of 83 and
65N/mm2 on mutually perpendicular planes. Determine the strain in the direction of each stress and in
the direction perpendicular to both stresses. Find also the principal strains, the maximum shear stress,
the maximum shear strain, and their directions at the point. Take E=200000N/mm2 and v=0.3.
If we assume that σx=83N/mm2 and σy=65N/mm2, then from Eqs. (1.52)

εx = 1

200000
(83− 0.3× 65) = 3.175× 10−4

εy = 1

200000
(65− 0.3× 83) = 2.005× 10−4

εz = −0.3
200000

(83+ 65) = −2.220× 10−4

In this case, since there are no shear stresses on the given planes, σx and σy are principal stresses so
that εx and εy are the principal strains and are in the directions of σx and σy. It follows from Eq. (1.15)
that the maximum shear stress (in the plane of the stresses) is

τmax = 83− 65
2

= 9N/mm2

acting on planes at 45◦ to the principal planes.
Further, using Eq. (1.50), the maximum shear strain is

γmax = 2× (1+ 0.3) × 9
200000

so that γmax=1.17×10−4 on the planes of maximum shear stress.

Example 1.5
At a particular point in a structural member, a two-dimensional stress system exists where
σx=60N/mm2, σy=−40N/mm2, and τxy=50N/mm2. If Young’s modulus E=200000N/mm2 and
Poisson’s ratio ν =0.3, calculate the direct strain in the x and y directions and the shear strain at the
point. Also calculate the principal strains at the point and their inclination to the plane on which σx acts;
verify these answers using a graphical method.
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From Eqs. (1.52),

εx = 1

200000
(60+ 0.3× 40) = 360× 10−6

εy = 1

200000
(−40− 0.3× 60) = −290× 10−6

From Eq. (1.50), the shear modulus, G, is given by

G= E

2(1+ ν)
= 200000

2(1+ 0.3) = 76923N/mm2

Hence, from Eqs. (1.52),

γxy = τxy

G
= 50

76923
= 650× 10−6

Now substituting in Eq. (1.35) for εx,εy, and γxy,

εI = 10−6
[
360− 290

2
+ 1

2

√
(360+ 290)2+ 6502

]

which gives

εI = 495× 10−6

Similarly, from Eq. (1.36),

εII = −425× 10−6

From Eq. (1.37),

tan2θ = 650× 10−6
360× 10−6+ 290× 10−6 = 1

Therefore,

2θ = 45◦ or 225◦

so that

θ = 22.5◦ or 112.5◦

The values of εI, εII, and θ are verified using Mohr’s circle of strain (Fig. 1.17). Axes Oε and Oγ

are set up, and the points Q1 (360×10−6, 12 ×650×10−6) and Q2 (−290×10−6,− 1
2 ×650×10−6)
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Fig. 1.17

Mohr’s circle of strain for Example 1.5.

are located. The center C of the circle is the intersection of Q1Q2 and the Oε axis. The circle is then
drawn with radius CQ1, and the points B(εI) and A(εII) are located. Finally, angle Q1CB=2θ and angle
Q1CA=2θ +π .

1.15.1 Temperature Effects
The stress–strain relationships of Eqs. (1.43) through (1.47) apply to a body or structural member
at a constant uniform temperature. A temperature rise (or fall) generally results in an expansion (or
contraction) of the body or structural member so that there is a change in size—that is, a strain.
Consider a bar of uniform section, of original length Lo, and suppose that it is subjected to a

temperature change�T along its length;�T can be a rise (+ve) or fall (−ve). If the coefficient of linear
expansion of the material of the bar is α, the final length of the bar is, from elementary physics,

L = Lo(1+ α�T)

so that the strain, ε, is given by

ε = L− Lo
Lo

= α�T (1.55)

Suppose now that a compressive axial force is applied to each end of the bar such that the bar
returns to its original length. The mechanical strain produced by the axial force is therefore just large
enough to offset the thermal strain due to the temperature changemaking the total strain zero. In general
terms, the total strain, ε, is the sum of the mechanical and thermal strains. Therefore, from Eqs. (1.40)
and (1.55),

ε = σ

E
+ α�T (1.56)
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In the case where the bar is returned to its original length or if the bar had not been allowed to expand
at all, the total strain is zero, and from Eq. (1.56),

σ = −Eα�T (1.57)

Equations (1.42) may now be modified to include the contribution of thermal strain. Therefore, by
comparing Eq. (1.56),

εx = 1

E
[σx − ν(σy+ σz)]+ α�T

εy = 1

E
[σy− ν(σx + σz)]+ α�T

εz = 1

E
[σz − ν(σx + σy)]+ α�T

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.58)

Equations (1.58) may be transposed in the sameway as Eqs. (1.42) to give stress–strain relationships
rather than strain–stress relationships:

σx = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εx − E

(1− 2ν)
α�T

σy = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εy− E

(1− 2ν)
α�T

σz = νE

(1+ ν)(1− 2ν)
e+ E

(1+ ν)
εz − E

(1− 2ν)
α�T

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.59)

For the case of plane stress in which σz=0, these equations reduce to

σx = E

(1− ν2)
(εx + νεy) − E

(1− ν)
α�T

σy = E

(1− ν2)
(εy+ νεx) − E

(1− ν)
α�T

⎫⎪⎪⎬
⎪⎪⎭ (1.60)

Example 1.6
A composite bar of length L has a central core of copper loosely inserted in a sleeve of steel; the ends
of the steel and copper are attached to each other by rigid plates. If the bar is subjected to a temperature
rise�T , determine the stress in the steel and copper and the extension of the composite bar. The copper
core has a Young’s modulus Ec, a cross-sectional area Ac, and a coefficient of linear expansion αc; the
corresponding values for the steel are Es, As, and αs. Assume that αc>αs.

If the copper core and steel sleeve were allowed to expand freely, their final lengths would be
different, since they have different values of the coefficient of linear expansion. However, since they
are rigidly attached at their ends, one restrains the other and an axial stress is induced in each. Suppose
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that this stress is σx. Then in Eqs. (1.58), σx=σc or σs and σy=σz=0; the total strain in the copper and
steel is then, respectively,

εc = σc

Ec
+ αc�T (i)

εs = σs

Es
+ αs�T (ii)

The total strain in the copper and steel is the same, since their ends are rigidly attached to each other.
Therefore, from compatibility of displacement,

σc

Ec
+ αc�T = σs

Es
+ αs�T (iii)

There is no external axial load applied to the bar so that

σcAc+ σs As = 0

that is, σs = −Ac
As

σc (iv)

Substituting for σs in Eq. (iii) gives

σc

(
1

Ec
+ Ac
AsEs

)
= �T(αs− αc)

from which σc = �T(αs− αc)AsEsEc
AsEs+AcEc (v)

Also, αc>σs so that σc is negative and therefore compressive. Now substituting for σc in Eq. (iv),

σs = −�T(αs− αc)AcEsEc
AsEs+AcEc (vi)

which is positive and therefore tensile as would be expected by a physical appreciation of the situation.
Finally, the extension of the compound bar, δ, is found by substituting for σc in Eq. (i) or for σs in

Eq. (ii). Then,

δ = �TL

(
αcAcEc+ αsAsEs
AsEs+AcEc

)
(vii)
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1.16 EXPERIMENTAL MEASUREMENT OF SURFACE STRAINS
Stresses at a point on the surface of a piece of material may be determined by measuring the strains
at the point, usually by electrical resistance strain gauges arranged in the form of a rosette, as shown
in Fig. 1.18. Suppose that εI and εII are the principal strains at the point, then if εa,εb, and εc are the
measured strains in the directions θ , (θ +α), and (θ +α+β) to εI, we have, from the general direct
strain relationship of Eq. (1.31),

εa = εI cos
2 θ + εII sin

2 θ (1.61)

where εx becomes εI,εy becomes εII, and γxy is zero, since the x and y directions have become principal
directions. Rewriting Eq. (1.61), we have

εa = εI

(
1+ cos2θ

2

)
+ εII

(
1− cos2θ

2

)
or

εa = 1
2 (εI+ εII) + 1

2 (εI− εII)cos2θ (1.62)

Similarly,

εb = 1
2 (εI+ εII) + 1

2 (εI− εII)cos2(θ + α) (1.63)

and

εc = 1
2 (εI+ εII) + 1

2 (εI− εII)cos2(θ + α + β) (1.64)

Therefore, if εa,εb, and εc are measured in given directions—that is, given angles α and β—then εI,εII,
and θ are the only unknowns in Eqs. (1.62) to (1.64).

Fig. 1.18

Strain gauge rosette.
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The principal stresses are now obtained by substitution of εI and εII in Eqs. (1.52). Thus,

εI = 1

E
(σI− νσII) (1.65)

and

εII = 1

E
(σII− νσI) (1.66)

Solving Eqs. (1.65) and (1.66) gives

σI = E

1− ν2
(εI+ νεII) (1.67)

and

σII = E

1− ν2
(εII+ νεI) (1.68)

A typical rosette would have α=β =45◦, in which case the principal strains are most conveniently
found using the geometry of Mohr’s circle of strain. Suppose that the arm a of the rosette is inclined at
some unknown angle θ to the maximum principal strain as in Fig. 1.18. Then, Mohr’s circle of strain
is as shown in Fig. 1.19; the shear strains γa,γb, and γc do not feature in the analysis and are therefore
ignored. From Fig. 1.19, we have

OC= 1
2 (εa+ εc)

CN = εa−OC= 1
2 (εa− εc)

QN = CM= εb−OC= εb− 1
2 (εa+ εc)

Fig. 1.19

Experimental values of principal strain using Mohr’s circle.
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The radius of the circle is CQ and

CQ=
√
CN2+QN2

Hence,

CQ=
√[ 1

2 (εa− εc)
]2+ [εb− 1

2 (εa+ εc)
]2

which simplifies to

CQ= 1√
2

√
(εa− εb)2+ (εc− εb)2

Therefore, εI is given by

εI = OC+ radius of circle
is

εI = 1
2 (εa+ εc) + 1√

2

√
(εa− εb)2+ (εc− εb)2 (1.69)

Also,

εII = OC− radius of circle
that is,

εII = 1
2 (εa+ εc) − 1√

2

√
(εa− εb)2+ (εc− εb)2 (1.70)

Finally, the angle θ is given by

tan2θ = QN

CN
= εb− 1

2 (εa+ εc)

1
2 (εa− εc)

that is,

tan2θ = 2εb− εa− εc

εa− εc
(1.71)

A similar approach may be adopted for a 60◦ rosette.

Example 1.7
A bar of solid circular cross section has a diameter of 50mm and carries a torque, T , together
with an axial tensile load, P. A rectangular strain gauge rosette attached to the surface of the bar
gave the following strain readings: εa=1000×10−6, εb=−200×10−6, and εc=−300×10−6, where
the gauges ‘a’ and ‘c’ are in line with, and perpendicular to, the axis of the bar, respectively. If
Young’s modulus, E, for the bar is 70000N/mm2 and Poisson’s ratio, ν, is 0.3, calculate the values of
T and P.
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Substituting the values of εa,εb, and εc in Eq. (1.69),

εI = 10−6

2
(1000− 300) + 10−6√

2

√
(1000+ 200)2+ (−200+ 300)2

which gives

εI = 1202× 10−6

Similarly, from Eq. (1.70),

εII = −502× 10−6

Now substituting for εI and εII in Eq. (1.67),

σI = 70000× 10−6
1− (0.3)2

(−502+ 0.3× 1202) = −80.9N/mm2

Similarly, from Eq. (1.68),

σII = −10.9N/mm2

Since σy=0, Eqs. (1.11) and (1.12) reduce to

σI = σx

2
+ 1

2

√
σ 2x + 4τ 2xy (i)

and

σII = σx

2
− 1

2

√
σ 2x + 4τ 2xy (ii)

respectively. Adding Eqs. (i) and (ii), we obtain

σI+ σII = σx

Thus,

σx = 80.9− 10.9= 70N/mm2

For an axial load P,

σx = 70N/mm2 = P

A
= P

π × 502/4
from which

P = 137.4kN
Substituting for σx in either of Eq. (i) or of Eq. (ii) gives

τxy = 29.7N/mm2
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From the theory of the torsion of circular section bars (see Eq. (iv) in Example 3.1),

τxy = 29.7N/mm2 = Tr

J
= T × 25

π × 504/32
from which

T = 0.7kNm
Note that P could have been found directly in this particular case from the axial strain. Thus, from

the first of Eqs. (1.52),

σx = Eεa = 70000× 1000× 10−6 = 70N/mm2

as before.
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Problems
P.1.1 A structural member supports loads that produce, at a particular point, a direct tensile stress of 80N/mm2

and a shear stress of 45N/mm2 on the same plane. Calculate the values and directions of the principal stresses at
the point and also the maximum shear stress, stating on which planes this will act.

Ans. σI=100.2N/mm2 θ =24◦11′
σII=−20.2N/mm2 θ =114◦11′

τmax=60.2N/mm2 at 45◦ to principal planes.

P.1.2 At a point in an elastic material, there are two mutually perpendicular planes, one of which carries a direct
tensile stress of 50N/mm2 and a shear stress of 40N/mm2, while the other plane is subjected to a direct compressive
stress of 35N/mm2 and a complementary shear stress of 40N/mm2. Determine the principal stresses at the point,
the position of the planes on which they act, and the position of the planes on which there is no normal stress.

Ans. σI=65.9N/mm2 θ =21◦38′
σII=−50.9N/mm2 θ =111◦38′

No normal stress on planes at 70◦21′ and −27◦5′ to vertical.
P.1.3 Listed here are varying combinations of stresses acting at a point and referred to axes x and y in an elastic
material. Using Mohr’s circle of stress, determine the principal stresses at the point and their directions for each
combination.
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σx (N/mm2) σy (N/mm2) τxy (N/mm2)

(i) +54 +30 +5
(ii) +30 +54 −5
(iii) −60 −36 +5
(iv) +30 −50 +30
Ans. (i) σI=+55N/mm2 σII=+29N/mm2 σI at 11.5◦ to x axis.

(ii) σI=+55N/mm2 σII=+29N/mm2 σII at 11.5◦ to x axis.
(iii) σI=−34.5N/mm2 σII=−61N/mm2 σI at 79.5◦ to x axis.
(iv) σI=+40N/mm2 σII=−60N/mm2 σI at 18.5◦ to x axis.

Fig. P.1.4

P.1.4 The state of stress at a point is caused by three separate actions, each of which produces a pure, unidirec-
tional tension of 10N/mm2 individually but in three different directions, as shown in Fig. P.1.4. By transforming
the individual stresses to a common set of axes (x,y), determine the principal stresses at the point and their
directions.

Ans. σI=σII=15N/mm2. All directions are principal directions.
P.1.5 A shear stress τxy acts in a two-dimensional field in which the maximum allowable shear stress is denoted
by τmax and the major principal stress by σI.
Derive, using the geometry of Mohr’s circle of stress, expressions for the maximum values of direct stress

which may be applied to the x and y planes in terms of the three parameters just given.

Ans. σx=σI−τmax+
√

τ 2max−τ 2xy

σy=σI−τmax−
√

τ 2max−τ 2xy.

P.1.6 A solid shaft of circular cross section supports a torque of 50kNm and a bending moment of 25kNm. If
the diameter of the shaft is 150mm, calculate the values of the principal stresses and their directions at a point on
the surface of the shaft.

Ans. σI=121.4N/mm2 θ =31◦43′
σII=−46.4N/mm2 θ =121◦43′.
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P.1.7 An element of an elastic body is subjected to a three-dimensional stress system σx ,σy, and σz. Show that
if the direct strains in the directions x,y, and z are εx ,εy, and εz, then

σx = λe+ 2Gεx σy = λe+ 2Gεy σz = λe+ 2Gεz

where

λ = νE

(1+ ν)(1− 2ν)
and e= εx + εy+ εz

the volumetric strain.

P.1.8 Show that the compatibility equation for the case of plane strain such that

∂2γxy

∂x ∂y
= ∂2εy

∂x2
+ ∂2εx

∂y2

may be expressed in terms of direct stresses σx and σy in the form(
∂2

∂x2
+ ∂2

∂y2

)
(σx + σy) = 0

P.1.9 A bar of mild steel has a diameter of 75mm and is placed inside a hollow aluminum cylinder of internal
diameter 75mm and external diameter 100mm; both bar and cylinder are the same length. The resulting composite
bar is subjected to an axial compressive load of 1000kN. If the bar and cylinder contract by the same amount,
calculate the stress in each.

The temperature of the compressed composite bar is then reduced by 150◦C, but no change in length is permitted.
Calculate the final stress in the bar and in the cylinder if E (steel)=200000N/mm2,E (aluminum)=80 000N/mm2,
α (steel)=0.000012/◦C, and α (aluminum)=0.000005/◦C.
Ans. Due to load: σ (steel)=172.6N/mm2 (compression)

σ (aluminum)=69.1N/mm2 (compression).
Final stress: σ (steel)=187.4N/mm2 (tension)

σ (aluminum)=9.1N/mm2 (compression).
P.1.10 In Fig. P.1.10, the direct strains in the directions a,b,c are −0.002, −0.002, and +0.002, respectively. If I
and II denote principal directions, find εI,εII, and θ .

Ans. εI=+0.00283 εII=−0.00283 θ =−22.5◦ or +67.5◦.

Fig. P.1.10
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P.1.11 The simply supported rectangular beam shown in Fig. P.1.11 is subjected to two symmetrically placed
transverse loads each of magnitude Q. A rectangular strain gauge rosette located at a point P on the centroidal
axis on one vertical face of the beam gave strain readings as follows: εa=−222×10−6, εb=−213×10−6, and
εc=+45×10−6. The longitudinal stress σx at the point P due to an external compressive force is 7N/mm2.
Calculate the shear stress τ at the point P in the vertical plane and hence the transverse load Q:

(Q= 2bdτ/3 where b= breadth, d = depth of beam)

E = 31000N/mm2 ν = 0.2
Ans. τ =3.17N/ mm2 Q=95.1kN.

Fig. P.1.11
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2Two-Dimensional Problems
in Elasticity

Theoretically, we are now in a position to solve any three-dimensional problem in elasticity, having
derived three equilibrium conditions, Eqs. (1.5); six strain-displacement equations, Eqs. (1.18) and
(1.20); and six stress–strain relationships, Eqs. (1.42) and (1.46). These equations are sufficient, when
supplemented by appropriate boundary conditions, to obtain unique solutions for the six stress, six
strain, and three displacement functions. It has been found, however, that exact solutions are obtainable
only for some simple problems. For bodies of arbitrary shape and loading, approximate solutionsmay be
found by numerical methods (e.g., finite differences) or by the Rayleigh–Ritz method based on energy
principles (Chapter 7).
Two approaches are possible in the solution of elasticity problems. We may solve initially either for

the three unknown displacements or for the six unknown stresses. In the former method the equilib-
rium equations are written in terms of strain by expressing the six stresses as functions of strain (see
Problem P.1.7). The strain–displacement relationships are then used to form three equations involv-
ing the three displacements u, v, and w. The boundary conditions for this method of solution must
be specified as displacements. Determination of u, v, and w enables the six strains to be computed
from Eqs. (1.18) and (1.20); the six unknown stresses follow from the equations, expressing stress as
functions of strain. It should be noted here that no use has been made of the compatibility equations.
The fact that u, v, and w are determined directly ensures that they are single-valued functions, thereby
satisfying the requirement of compatibility.
In most structural problems, the object is usually to find the distribution of stress in an elastic body

produced by an external loading system. It is, therefore, more convenient in this case to determine the
six stresses before calculating any required strains or displacements. This is accomplished by using
Eqs. (1.42) and (1.46) to rewrite the six equations of compatibility in terms of stress. The resulting
equations, in turn, are simplified by making use of the stress relationships developed in the equations
of equilibrium. The solution of these equations automatically satisfies the conditions of compatibility
and equilibrium throughout the body.

2.1 TWO-DIMENSIONAL PROBLEMS
For the reasons discussed in Chapter 1 we shall confine our actual analysis to the two-dimensional
cases of plane stress and plane strain. The appropriate equilibrium conditions for plane stress are given

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00002-6 45
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by Eqs. (1.6):

∂σx

∂x
+ ∂τxy

∂y
+X = 0

∂σy

∂y
+ ∂τyx

∂y
+ Y = 0

and the required stress–strain relationships obtained from Eq. (1.47), namely,

εx = 1

E
(σx − νσy)

εy = 1

E
(σy− νσx)

γxy = 2(1+ ν)

E
τxy

We find that although εz exists, Eqs. (1.22) through (1.26) are identically satisfied, leaving Eq. (1.21)
as the required compatibility condition. Substitution in Eq. (1.21) of the preceding strains gives

2(1+ ν)
∂2τxy

∂x ∂y
= ∂2

∂x2
(σy− νσx) + ∂2

∂y2
(σx − νσy) (2.1)

From Eqs. (1.6)

∂2τxy

∂y∂x
= −∂2σx

∂x2
−∂X

∂x
(2.2)

and

∂2τxy

∂x ∂y
= −∂2σy

∂y2
−∂Y

∂y
(τyx = τxy) (2.3)

Adding Eqs. (2.2) and (2.3), then substituting in Eq. (2.1) for 2∂2τ xy/∂x∂y, we have

−(1+ ν)

(
∂X

∂x
+ ∂Y

∂y

)
= ∂2σx

∂x2
+ ∂2σy

∂y2
+ ∂2σy

∂x2
+ ∂2σx

∂y2

or (
∂2

∂x2
+ ∂2

∂y2

)
(σx + σy) = −(1+ ν)

(
∂X

∂x
+ ∂Y

∂y

)
(2.4)

The alternative two-dimensional problem of plane strainmay also be formulated in the samemanner.
We have seen in Section 1.11 that the six equations of compatibility reduce to the single equation (1.21)
for the plane strain condition. Further, from the third of Eqs. (1.42)

σz = ν (σx + σy) (since εz = 0 for plane strain)
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so that

εx = 1

E
[(1− ν2)σx − ν (1+ ν)σy]

and

εy = 1

E
[(1− ν2)σy− ν (1+ ν)σx]

Also,

γxy = 2(1+ ν)

E
τxy

Substituting as before in Eq. (1.21) and simplifying by using the equations of equilibrium, we have the
compatibility equation for plane strain(

∂2

∂x2
+ ∂2

∂y2

)
(σx + σy) = − 1

1− ν

(
∂X

∂x
+ ∂Y

∂y

)
(2.5)

The two equations of equilibrium together with the boundary conditions from Eq. (1.7) and one of
the compatibility equations (2.4) or (2.5) are generally sufficient for the determination of the stress
distribution in a two-dimensional problem.

2.2 STRESS FUNCTIONS
The solution of problems in elasticity presents difficulties, but the procedure may be simplified by the
introduction of a stress function. For a particular two-dimensional case, the stresses are related to a single
function of x and y such that the substitution for the stresses in terms of this function automatically
satisfies the equations of equilibrium irrespective of what form the function may take. However, a
large proportion of the infinite number of functions which fulfill this condition are eliminated by the
requirement that the form of the stress function must also satisfy the two-dimensional equations of
compatibility, (2.4) and (2.5), plus the appropriate boundary conditions.
For simplicity, let us consider the two-dimensional case for which the body forces are zero. Now, the

problem is to determine a stress–stress function relationship that satisfies the equilibrium conditions of

∂σx

∂x
+ ∂τxy

∂y
= 0

∂σy

∂y
+ ∂τyx

∂x
= 0

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

and a form for the stress function giving stresses, which satisfy the compatibility equation(
∂2

∂x2
+ ∂2

∂y2

)
(σx + σy) = 0 (2.7)
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The English mathematician Airy proposed a stress function φ defined by the equations

σx = ∂2φ

∂y2
σy = ∂2φ

∂x2
τxy = − ∂2φ

∂x ∂y
(2.8)

Clearly, substitution of Eqs. (2.8) into Eqs. (2.6) verifies that the equations of equilibrium are satisfied
by this particular stress–stress function relationship. Further substitution into Eq. (2.7) restricts the
possible forms of the stress function to those satisfying the biharmonic equation

∂4φ

∂x4
+ 2 ∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= 0 (2.9)

The final form of the stress function is then determined by the boundary conditions relating to the
actual problem. Therefore, a two-dimensional problem in elasticity with zero body forces reduces to the
determination of a function φ of x and y, which satisfies Eq. (2.9) at all points in the body and Eqs. (1.7)
reduced to two dimensions at all points on the boundary of the body.

2.3 INVERSE AND SEMI-INVERSE METHODS
The task of finding a stress function satisfying the preceding conditions is extremely difficult in the
majority of elasticity problems, although some important classical solutions have been obtained in this
way. An alternative approach, known as the inverse method, is to specify a form of the function φ

satisfying Eq. (2.9), assume an arbitrary boundary, and then to determine the loading conditions which
fit the assumed stress function and chosen boundary. Obvious solutions arise in which φ is expressed as
a polynomial. Timoshenko and Goodier [Ref. 1] consider a variety of polynomials for φ and determine
the associated loading conditions for a variety of rectangular sheets. Some of these cases are quoted
here.

Example 2.1
Consider the stress function

φ = Ax2+Bxy+Cy2
where A,B, and C are constants. Equation (2.9) is identically satisfied, since each term becomes zero
on substituting for φ. The stresses follow from

σx = ∂2φ

∂y2
= 2C

σy = ∂2φ

∂x2
= 2A

τxy = − ∂2φ

∂x ∂y
= −B

To produce these stresses at any point in a rectangular sheet, we require loading conditions providing
the boundary stresses shown in Fig. 2.1.
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Fig. 2.1

Required loading conditions on rectangular sheet in Example 2.1.

Example 2.2
A more complex polynomial for the stress function is

φ = Ax3

6
+ Bx2y

2
+ Cxy2

2
+ Dy3

6

As before

∂4φ

∂x4
= ∂4φ

∂x2∂y2
= ∂4φ

∂y4
= 0

so that the compatibility equation (2.9) is identically satisfied. The stresses are given by

σx = ∂2φ

∂y2
= Cx+Dy

σy = ∂2φ

∂x2
= Ax+By

τxy = − ∂2φ

∂x ∂y
= −Bx−Cy

We may choose any number of values for the coefficients A,B,C, and D to produce a variety of loading
conditions on a rectangular plate. For example, if we assume A= B= C = 0, then σx = Dy,σy = 0, and
τxy = 0, so that for axes referred to an origin at the mid-point of a vertical side of the plate, we obtain
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Fig. 2.2

(a) Required loading conditions on rectangular sheet in Example 2.2 for A= B= C = 0; (b) as in (a) but
A= C = D= 0.

the state of pure bending shown in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions
corresponding to A= C = D= 0 in which σx = 0, σy =By, and τxy = −Bx.
By assuming polynomials of the second or third degree for the stress function, we ensure that

the compatibility equation is identically satisfied for any values of the coefficients. For polynomials
of higher degrees, compatibility is satisfied only if the coefficients are related in a certain way. For
example, for a stress function in the form of a polynomial of the fourth degree

φ = Ax4

12
+ Bx3y

6
+ Cx2y2

2
+ Dxy3

6
+ Ey4

12

and

∂4φ

∂x4
= 2A 2

∂4φ

∂x2∂y2
= 4C ∂4φ

∂y4
= 2E

Substituting these values in Eq. (2.9) we have

E = −(2C+A)

The stress components are then

σx = ∂2φ

∂y2
= Cx2+Dxy− (2C+A)y2

σy = ∂2φ

∂x2
= Ax2+Bxy+Cy2

τxy = − ∂2φ

∂x ∂y
= −Bx

2

2
− 2Cxy− Dy2

2

The coefficientsA,B,C, andD are arbitrary andmay be chosen to produce various loading conditions
as in the previous examples.
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Example 2.3
A cantilever of length L and depth 2h is in a state of plane stress. The cantilever is of unit thickness, is
rigidly supported at the end x = L, and is loaded as shown in Fig. 2.3. Show that the stress function

φ = Ax2+Bx2y+Cy3+D(5x2y3− y5)
is valid for the beam and evaluate the constants A, B, C, and D.

The stress function must satisfy Eq. (2.9). From the expression for φ

∂φ

∂x
= 2Ax+ 2Bxy+ 10Dxy3

∂2φ

∂x2
= 2A+ 2By+ 10Dy3 = σy

(i)

Also,

∂φ

∂y
= Bx2+ 3Cy2+ 15Dx2y2− 5Dy4

∂2φ

∂y2
= 6Cy+ 30Dx2y− 20Dy3 = σx

(ii)

and

∂2φ

∂x ∂y
= 2Bx+ 30Dxy2 = −τxy (iii)

Fig. 2.3

Beam of Example 2.3.
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Further,

∂4φ

∂x4
= 0 ∂4φ

∂y4
= −120Dy ∂4φ

∂x2 ∂y2
= 60Dy

Substituting in Eq. (2.9) gives

∂4φ

∂x4
+ 2 ∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= 2× 60Dy− 120Dy = 0

Therefore, the biharmonic equation is satisfied, and the stress function is valid.
From Fig. 2.3, σy = 0 at y= h so that, from Eq. (i)

2A+ 2BH + 10Dh3 = 0 (iv)

Also, from Fig. 2.3, σy = −q at y= −h so that, from Eq. (i)
2A− 2BH − 10Dh3 = −q (v)

Again, from Fig. 2.3, τxy = 0 at y= ±h giving, from Eq. (iii)
2Bx+ 30Dxh2 = 0

so that

2B+ 30Dh2 = 0 (vi)

At x = 0, there is no resultant moment applied to the beam; that is,

Mx=0 =
h∫

−h
σxydy=

h∫
−h

(6Cy2− 20Dy4)dy= 0

that is,

Mx=0 = [2Cy3− 4Dy5]h−h = 0
or

C− 2Dh2 = 0 (vii)

Subtracting Eq. (v) from (iv)

4Bh+ 20Dh3 = q
or

B+ 5Dh2 = q

4h
(viii)
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From Eq. (vi)

B+ 15Dh2 = 0 (ix)

so that, subtracting Eq. (viii) from Eq. (ix)

D= − q

40h3

Then

B= 3q

8h
A= −q

4
C = − q

20h
and

φ = q

40h3
[−10h3x2+ 15h2x2y− 2h2y3− (5x2y3− y5)]

The obvious disadvantage of the inverse method is that we are determining problems to fit assumed
solutions, whereas in structural analysis the reverse is the case. However, in some problems the shape of
the body and the applied loading allow simplifying assumptions to be made, thereby enabling a solution
to be obtained. St. Venant suggested a semi-inverse method for the solution of this type of problem
in which assumptions are made as to stress or displacement components. These assumptions may be
based on experimental evidence or intuition. St. Venant first applied the method to the torsion of solid
sections (Chapter 3) and to the problem of a beam supporting shear loads (Section 2.6).

2.4 ST. VENANT’S PRINCIPLE
In the examples of Section 2.3, we have seen that a particular stress function form may be applicable
to a variety of problems. Different problems are deduced from a given stress function by specifying, in
the first instance, the shape of the body and then assigning a variety of values to the coefficients. The
resulting stress functions give stresses, which satisfy the equations of equilibrium and compatibility at
all points within and on the boundary of the body. It follows that the applied loads must be distributed
around the boundary of the body in the same manner as the internal stresses at the boundary. In the case
of pure bending, for example (Fig. 2.2(a)), the applied bendingmoment must be produced by tensile and
compressive forces on the ends of the plate, their magnitudes being dependent on their distance from
the neutral axis. If this condition is invalidated by the application of loads in an arbitrary fashion or by
preventing the free distortion of any section of the body, then the solution of the problem is no longer
exact. As this is the case in practically every structural problem, it would appear that the usefulness of
the theory is strictly limited. To surmount this obstacle, we turn to the important principle of St. Venant,
which may be summarized as stating:

that while statically equivalent systems of forces acting on a body produce substantially different
local effects the stresses at sections distant from the surface of loading are essentially the same.

Therefore, at a section AA close to the end of a beam supporting two point loads P, the stress
distribution varies as shown in Fig. 2.4, while at the section BB, a distance usually taken to be greater
than the dimension of the surface to which the load is applied, the stress distribution is uniform.
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Fig. 2.4

Stress distributions illustrating St. Venant’s principle.

We may, therefore, apply the theory to sections of bodies away from points of applied loading
or constraint. The determination of stresses in these regions requires, for some problems, separate
calculation.

2.5 DISPLACEMENTS
Having found the components of stress, Eq. (1.47) (for the case of plane stress) is used to determine
the components of strain. The displacements follow from Eqs. (1.27) and (1.28). The integration of
Eqs. (1.27) yields solutions of the form

u= εxx+ a− by (2.10)

v= εyy+ c+ bx (2.11)

in which a,b, and c are constants representing movement of the body as a whole or rigid body dis-
placements. Of these, a and c represent pure translatory motions of the body, while b is a small angular
rotation of the body in the xy plane. If we assume that b is positive in an anticlockwise sense, then in
Fig. 2.5 the displacement v′ due to the rotation is given by

v′ = P′Q′ − PQ
= OPsin (θ + b) −OPsinθ

which, since b is a small angle, reduces to

v′ = bx
Similarly,

u′ = −by as stated
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Fig. 2.5

Displacements produced by rigid body rotation.

2.6 BENDING OF AN END-LOADED CANTILEVER
In his semi-inverse solution of this problem, St. Venant based his choice of stress function on the
reasonable assumptions that the direct stress is directly proportional to bending moment (and therefore
distance from the free end) and height above the neutral axis. The portion of the stress function giving
shear stress follows from the equilibrium condition relating σx and τxy. The appropriate stress function
for the cantilever beam shown in Fig. 2.6 is then

φ = Axy+ Bxy3

6
(i)

where A and B are unknown constants. Hence

σx= ∂2φ

∂y2
= Bxy

σy= ∂2φ

∂x2
= 0

τxy= − ∂2φ

∂x ∂y
= −A− By2

2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(ii)

Substitution for φ in the biharmonic equation shows that the form of the stress function satisfies com-
patibility for all values of the constants A and B. The actual values of A and B are chosen to satisfy the
boundary condition—that is, τxy = 0—along the upper and lower edges of the beam, and the resultant
shear load over the free end is equal to P.
From the first of these

τxy = −A− By2

2
= 0 at y= ±b

2
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Fig. 2.6

Bending of an end-loaded cantilever.

giving

A= −Bb
2

8

From the second

−
∫ b/2

−b/2
τxy dy= P (see sign convention for τxy)

or

−
∫ b/2

−b/2

(
Bb2

8
− By2

2

)
dy= P

from which

B= −12P
b3

The stresses follow from Eqs. (ii)

σx= −12Pxy
b3

= −Px
I
y

σy= 0
τxy= −12P

8b3
(b2− 4y2) = − P

8I
(b2− 4y2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(iii)

where I = b3/12 the second moment of area of the beam cross section.
We note from the discussion of Section 2.4 that Eqs. (iii) represents an exact solution subject to the

following conditions that:

(1) the shear force P is distributed over the free end in the same manner as the shear stress τxy given
by Eqs. (iii)



2.6 Bending of an End-Loaded Cantilever 57

(2) the distribution of shear and direct stresses at the built-in end is the same as those given by
Eqs. (iii)

(3) all sections of the beam, including the built-in end, are free to distort

In practical cases none of these conditions is satisfied, but by virtue of St. Venant’s principle we may
assume that the solution is exact for regions of the beam away from the built-in end and the applied
load. For many solid sections, the inaccuracies in these regions are small. However, for thin-walled
structures, with which we are primarily concerned, significant changes occur.
We now proceed to determine the displacements corresponding to the stress system of Eqs. (iii).

Applying the strain–displacement and stress–strain relationships, Eqs. (1.27), (1.28), and (1.47), we
have

εx = ∂u

∂x
= σx

E
= −Pxy

EI
(iv)

εy = ∂v

∂y
= −νσx

E
= νPxy

EI
(v)

γxy = ∂u

∂y
+ ∂v

∂x
= τxy

G
= − P

8IG

(
b2− 4y2) (vi)

Integrating Eqs. (iv) and (v) and noting that εx and εy are partial derivatives of the displacements, we
find

u= −Px
2y

2EI
+ f1(y) v= νPxy2

2EI
+ f2x (vii)

where f1(y) and f2(x) are unknown functions of x and y. Substituting these values of u and v in Eq. (vi)

−Px
2

2EI
+ ∂f1(y)

∂y
+ νPy2

2EI
+ ∂f2(x)

∂x
= − P

8IG

(
b2− 4y2)

Separating the terms containing x and y in this equation and writing

F1(x) = −Px
2

2EI
+ ∂f2(x)

∂x
F2(y) = νPy2

2EI
− Py2

2IG
+ ∂f1(y)

∂y

we have

F1(x) +F2(y) = −Pb
2

8IG

The term on the right-hand side of this equation is a constant, which means that F1(x) and F2(y)
must be constants, otherwise a variation of either x or y would destroy the equality. Denoting F1(x) by
C and F2(y) by D gives

C+D= −Pb
2

8IG
(viii)
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and

∂f2(x)

∂x
= Px2

2EI
+C ∂f1(y)

∂y
= Py2

2IG
− νPy2

2EI
+D

so that

f2(x) = Px3

6EI
+Cx+F

and

f1(y) = Py3

6IG
− νPy3

6EI
+Dy+H

Therefore, from Eqs. (vii)

u= −Px
2y

2EI
− νPy3

6EI
+ Py3

6IG
+Dy+H (ix)

v= νPxy2

2EI
+ Px3

6EI
+Cx+F (x)

The constants C,D,F, and H are now determined from Eq. (viii) and the displacement boundary
conditions imposed by the support system. Assuming that the support prevents movement of the point
K in the beam cross section at the built-in end, then u= v= 0 at x = l, y= 0, and from Eqs. (ix) and (x)

H = 0 F = − Pl
3

6EI
−Cl

If we now assume that the slope of the neutral plane is zero at the built-in end, then ∂v/∂x = 0 at x = l,
y= 0, and from Eq. (x)

C = − Pl
2

2EI

It follows immediately that

F = Pl3

2EI

and, from Eq. (viii)

D= Pl2

2EI
− Pb2

8IG

Substitution for the constants C,D,F, and H in Eqs. (ix) and (x) now produces the equations for the
components of displacement at any point in the beam. Thus,

u= −Px
2y

2EI
− νPy3

6EI
+ Py3

6IG
+
(
Pl2

2EI
− Pb2

8IG

)
y (xi)

v= νPxy2

2EI
+ Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
(xii)
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The deflection curve for the neutral plane is

(v)y=0 = Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
(xiii)

from which the tip deflection (x = 0) is Pl3/3EI. This value is that predicted by simple beam theory
(Chapter 15) and does not include the contribution to deflection of the shear strain. This was elim-
inated when we assumed that the slope of the neutral plane at the built-in end was zero. A more
detailed examination of this effect is instructive. The shear strain at any point in the beam is given
by Eq. (vi)

γxy = − P

8IG

(
b2− 4y2)

and is obviously independent of x. Therefore, at all points on the neutral plane the shear strain is constant
and equal to

γxy = −Pb
2

8IG
,

which amounts to a rotation of the neutral plane as shown in Fig. 2.7. The deflection of the neutral plane
due to this shear strain at any section of the beam is therefore equal to

Pb2

8IG
(l− x)

and Eq. (xiii) may be rewritten to include the effect of shear as

(v)y=0 = Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
+ Pb2

8IG
(l− x) (xiv)

Let us now examine the distorted shape of the beam section, which the analysis assumes is free to
take place. At the built-in end when x = l the displacement of any point is, from Eq. (xi)

u= νPy3

6EI
+ Py3

6IG
− Pb2y

8IG
(xv)

Fig. 2.7

Rotation of neutral plane due to shear in end-loaded cantilever.
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Fig. 2.8

(a) Distortion of cross section due to shear; (b) effect on distortion of rotation due to shear.

Therefore, if allowed, the cross section would take the shape of the shallow reversed S shown in
Fig. 2.8(a). Eq. (xv) does not include the previously discussed effect of rotation of the neutral plane
caused by shear. However, it merely rotates the beam section as indicated in Fig. 2.8(b).
The distortion of the cross section is produced by the variation of shear stress over the depth of the

beam. Thus, the basic assumption of simple beam theory that plane sections remain plane is not valid
when shear loads are present, although for long, slender beams the bending stresses are much greater
than shear stresses and the effect may be ignored.
It will be observed from Fig. 2.8 that an additional direct stress system will be imposed on the beam

at the support where the section is constrained to remain plane. For most engineering structures, this
effect is small but, as mentioned previously, may be significant in thin-walled sections.

Reference
[1] Timoshenko, S., and Goodier, J.N., Theory of Elasticity, 2nd edition, McGraw-Hill, 1951.

Problems
P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point O and the direction of Ox are
fixed in space and the plate is subjected to the following uniform stresses:

compressive, 3p, parallel to Ox
tensile, 2p, parallel to Oy
shearing, 4p, in planes parallel to Ox and Oy
in a sense tending to decrease the angle xOy

Determine the direction in which a certain point on the plate will be displaced; the coordinates of the point are
(2, 3) before straining. Poisson’s ratio is 0.25.

Ans. 19.73◦ to Ox.

P.2.2 What do you understand by an Airy stress function in two dimensions? A beam of length l, with a thin
rectangular cross section, is built-in at the end x=0 and loaded at the tip by a vertical force P (Fig. P.2.2). Show
that the stress distribution, as calculated by simple beam theory, can be represented by the expression

φ = Ay3+By3x+Cyx
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Fig. P.2.2

as an Airy stress function and determine the coefficients A,B, and C.

Ans. A=2Pl/td3, B=−2P/td3, C=3P/2td.

P.2.3 The cantilever beam shown in Fig. P.2.3 is in a state of plane strain and is rigidly supported at x=L.
Examine the following stress function in relation to this problem:

φ = w

20h3
(
15h2x2y− 5x2y3− 2h2y3+ y5)

Fig. P.2.3

Show that the stresses acting on the boundaries satisfy the conditions except for a distributed direct stress at the
free end of the beam which exerts no resultant force or bending moment.

Ans. The stress function satisfies the biharmonic equation:

• At y=h, σy=w, and τxy=0, boundary conditions satisfied.
• At y=−h, σy=−w, and τxy=0, boundary conditions satisfied.

Direct stress at free end of beam is not zero, and there is no resultant force or bending moment at the free end.

P.2.4 A thin rectangular plate of unit thickness (Fig. P.2.4) is loaded along the edge y=+d by a linearly varying
distributed load of intensity w=px with corresponding equilibrating shears along the vertical edges at x=0 and l.
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Fig. P.2.4

As a solution to the stress analysis problem an Airy stress function φ is proposed, where

φ = p

120d3
[5(x3− l2x)(y+ d)2(y− 2d)− 3yx(y2− d2)2]

Show that φ satisfies the internal compatibility conditions and obtain the distribution of stresses within the
plate. Determine also the extent to which the static boundary conditions are satisfied.

Ans. σx = px

20d3
[5y(x2− l2) − 10y3+ 6d2y]

σy = px

4d3
(y3− 3yd2− 2d3)

τxy = −p
40d3

[5(3x2− l2)(y2− d2) − 5y4+ 6y2d2− d4].

The boundary stress function values of τ xy do not agree with the assumed constant equilibrating shears at x=0
and l.

P.2.5 The cantilever beam shown in Fig. P.2.5 is rigidly fixed at x = L and carries loading such that the Airy
stress function relating to the problem is

φ = w

40bc3
(−10c3x2− 15c2x2y+ 2c2y3+ 5x2y3− y5)

Find the loading pattern corresponding to the function and check its validity with respect to the boundary conditions.

Fig. P.2.5
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Ans. The stress function satisfies the biharmonic equation. The beam is a cantilever under a uniformly dis-
tributed loadof intensityw/unit areawith a self-equilibrating stress applicationgivenby σx=w(12c3y−20y3)/40bc3
at x=0. There is zero shear stress at y=±c and x=0. At y=+c, σy=−w/b, and at y=−c, σy=0.
P.2.6 A two-dimensional isotropic sheet, having a Young’s modulus E and linear coefficient of expansion α, is
heated nonuniformly, the temperature being T (x,y). Show that the Airy stress function φ satisfies the differential
equation

∇2(∇2φ +EαT) = 0
where

∇2 = ∂2

∂x2
+ ∂2

∂y2

is the Laplace operator.

P.2.7 Investigate the state of plane stress described by the following Airy stress function

φ = 3Qxy

4a
− Qxy3

4a3

over the square region x=−a to x=+a, y=−a to y=+a. Calculate the stress resultants per unit thickness over
each boundary of the region.

Ans. The stress function satisfies the biharmonic equation. Also,

when x=a, σx = −3Qy
2a2

when x=−a, σx = 3Qy

2a2
and

τxy = −3Q
4a

(
1− y2

a2

)
.
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CHAPTER

3Torsion of Solid Sections

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross section is accom-
plished by the semi-inverse method (Section 2.3) in which assumptions are made regarding either stress
or displacement components. The former method owes its derivation to Prandtl, the latter to St. Venant.
Both methods are presented in this chapter together with the useful membrane analogy introduced by
Prandtl.

3.1 PRANDTL STRESS FUNCTION SOLUTION
Consider the straight bar of uniform cross section shown in Fig. 3.1. It is subjected to equal but opposite
torques T at each end, both of which are assumed to be free from restraint so that warping displacements
w—that is, displacements of cross sections normal to and out of their original planes—are unrestrained.
Further, we make the reasonable assumptions that since no direct loads are applied to the bar

σx = σy = σz = 0
and that the torque is resisted solely by shear stresses in the plane of the cross section, giving

τxy = 0
To verify these assumptions, we must show that the remaining stresses satisfy the conditions of equilib-
rium and compatibility at all points throughout the bar and, in addition, fulfill the equilibrium boundary
conditions at all points on the surface of the bar.
If we ignore body forces, the equations of equilibrium (1.5) reduce as a result of our assumptions, to

∂τxz

∂z
= 0 ∂τyz

∂z
= 0 ∂τzx

∂x
+ ∂τyz

∂y
= 0 (3.1)

The first two equations of Eqs. (3.1) show that the shear stresses τxz and τyz are functions of x and y
only. Therefore, they are constant at all points along the length of the bar, which have the same x and
y coordinates. At this stage, we turn to the stress function to simplify the process of solution. Prandtl
introduced a stress function φ defined by

∂φ

∂x
= −τzy

∂φ

∂y
= τzx (3.2)

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00003-8 65
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Fig. 3.1

Torsion of a bar of uniform, arbitrary cross section.

which identically satisfies the third of the equilibrium equations (3.1) whatever form φ may take.
Therefore, we have to find the possible forms of φ which satisfy the compatibility equations and the
boundary conditions, the latter being, in fact, the requirement that distinguishes one torsion problem
from another.
From the assumed state of stress in the bar, we deduce that

εx = εy = εz = γxy = 0 (see Eqs. (1.42) and (1.46))

Further, since τxz and τyz and hence γxz and γyz are functions of x and y only, then the compatibility
equations (1.21) through (1.23) are identically satisfied as is Eq. (1.26). The remaining compatibility
equations, (1.24) and (1.25), are then reduced to

∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y

)
= 0

∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y

)
= 0

Substituting initially for γyz and γxz from Eqs. (1.46) and then for τzy(=τyz) and τzx(=τxz) from
Eqs. (3.2) gives

∂

∂x

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
= 0

− ∂

∂y

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
= 0

or

∂

∂x
∇2φ = 0 − ∂

∂y
∇2φ = 0, (3.3)
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where ∇2 is the two-dimensional Laplacian operator(
∂2

∂x2
+ ∂2

∂y2

)

Therefore, the parameter ∇2φ is constant at any section of the bar so that the function φ must satisfy
the equation

∂2φ

∂x2
+ ∂2φ

∂y2
= constant = F (say) (3.4)

at all points within the bar.
Finally, we must ensure that φ fulfills the boundary conditions specified by Eqs. (1.7). On the

cylindrical surface of the bar, there are no externally applied forces so thatX = Y = Z = 0. The direction
cosine n is also zero, and therefore the first two equations of Eqs. (1.7) are identically satisfied, leaving
the third equation as the boundary condition; that is,

τyzm+ τxzl = 0 (3.5)

The direction cosines l and m of the normal N to any point on the surface of the bar are, by reference
to Fig. 3.2,

l = dy

ds
m= −dx

ds
(3.6)

Substituting Eqs. (3.2) and (3.6) into Eq. (3.5), we have

∂φ

∂x

dx

ds
+ ∂φ

∂y

dy

ds
= 0

or

∂φ

ds
= 0

Fig. 3.2

Formation of the direction cosines l and m of the normal to the surface of the bar.
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Thus, φ is constant on the surface of the bar, and since the actual value of this constant does not affect
the stresses of Eq. (3.2), we may conveniently take the constant to be zero. Hence, on the cylindrical
surface of the bar, we have the boundary condition

φ = 0 (3.7)

On the ends of the bar, the direction cosines of the normal to the surface have the values l = 0, m= 0,
and n= 1. The related boundary conditions, from Eqs. (1.7), are then

X = τzx

Y = τzy

Z = 0
We now observe that the forces on each end of the bar are shear forces which are distributed over the
ends of the bar in the same manner as the shear stresses are distributed over the cross section. The
resultant shear force in the positive direction of the x axis, which we shall call Sx, is then

Sx =
∫∫

Xdxdy=
∫∫

τzx dxdy

or, using the relationship of Eqs. (3.2),

Sx =
∫∫

∂φ

∂y
dxdy=

∫
dx
∫

∂φ

∂y
dy= 0

as φ = 0 at the boundary. In a similar manner, Sy, the resultant shear force in the y direction, is

Sy = −
∫
dy
∫

∂φ

∂x
dx = 0

It follows that there is no resultant shear force on the ends of the bar and the forces represent a torque
of magnitude, referring to Fig. 3.3

T =
∫∫

(τzyx− τzxy)dxdy

in which we take the sign of T as being positive in the anticlockwise sense.
Rewriting this equation in terms of the stress function φ

T = −
∫∫

∂φ

∂x
xdxdy−

∫∫
∂φ

∂y
ydxdy

Integrating each term on the right-hand side of this equation by parts, and noting again that φ = 0 at all
points on the boundary, we have

T = 2
∫∫

φ dxdy (3.8)



3.1 Prandtl Stress Function Solution 69

Fig. 3.3

Derivation of torque on cross section of bar.

Therefore, we are in a position to obtain an exact solution to a torsion problem if a stress function
φ(x,y) can be found to satisfy Eq. (3.4) at all points within the bar and that vanishes on the surface
of the bar, provided that the external torques are distributed over the ends of the bar in an identical
manner to the distribution of internal stress over the cross section. Although the last proviso is generally
impracticable, we know from St. Venant’s principle that only stresses in the end regions are affected;
therefore, the solution is applicable to sections at distances from the ends usually taken to be greater than
the largest cross-sectional dimension. We have now satisfied all the conditions of the problem without
the use of stresses other than τzy and τzx , demonstrating that our original assumptions were justified.
Usually, in addition to the stress distribution in the bar, we must know the angle of twist and the

warping displacement of the cross section. First, however, we shall investigate themode of displacement
of the cross section. We have seen that as a result of our assumed values of stress,

εx = εy = εz = γxy = 0

It follows, from Eqs. (1.18) and the second of Eqs. (1.20), that

∂u

∂x
= ∂v

∂y
= ∂w

∂z
= ∂v

∂x
+ ∂u

∂y
= 0

which result leads to the conclusions that each cross section rotates as a rigid body in its own plane
about a center of rotation or twist, and that although cross sections suffer warping displacements normal
to their planes, the values of this displacement at points having the same coordinates along the length
of the bar are equal. Therefore, each longitudinal fiber of the bar remains unstrained, as we have in fact
assumed.
Let us suppose that a cross section of the bar rotates through a small angle θ about its center of twist

assumed coincident with the origin of the axes Oxy (see Fig. 3.4). Some point P(r,α) will be displaced
to P′(r,α+θ), the components of its displacement being

u= −rθ sinα v= rθ cosα
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Fig. 3.4

Rigid body displacement in the cross section of the bar.

or

u= −θy v = θx (3.9)

Referring to Eqs. (1.20) and (1.46)

γzx = ∂u

∂z
+ ∂w

∂x
= τzx

G
γzy = ∂w

∂y
+ ∂v

∂z
= τzy

G

Rearranging and substituting for u and v from Eqs. (3.9)

∂w

∂x
= τzx

G
+ dθ

dz
y

∂w

∂y
= τzy

G
− dθ

dz
x (3.10)

For a particular torsion problem Eqs. (3.10) enable the warping displacement w of the originally
plane cross section to be determined. Note that since each cross section rotates as a rigid body, θ is a
function of z only.
Differentiating the first of Eqs. (3.10) with respect to y, the second with respect to x, and subtracting,

we have

0= 1

G

(
∂τzx

∂y
− ∂τzy

∂x

)
+ 2dθ

dz

Expressing τzx and τzy in terms of φ gives

∂2φ

∂x2
+ ∂2φ

∂y2
= −2Gdθ

dz

or, from Eq. (3.4)

−2Gdθ
dz

= ∇2φ = F (constant) (3.11)
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It is convenient to introduce a torsion constant J defined by the general torsion equation

T = GJ dθ
dz

(3.12)

The product GJ is known as the torsional rigidity of the bar and may be written, from Eqs. (3.8)
and (3.11),

GJ = − 4G

∇2φ
∫∫

φ dxdy (3.13)

Consider now the line of constant φ in Fig. 3.5. If s is the distance measured along this line from
some arbitrary point, then

∂φ

∂s
= 0= ∂φ

∂y

dy

ds
+ ∂φ

∂x

dx

ds

Using Eqs. (3.2) and (3.6), we may rewrite this equation as

∂φ

∂s
= τzxl+ τzym= 0 (3.14)

From Fig. 3.5 the normal and tangential components of shear stress are

τzn = τzxl+ τzym τzs = τzyl− τzxm (3.15)

Comparing the first of Eqs. (3.15) with Eq. (3.14), we see that the normal shear stress is zero so that
the resultant shear stress at any point is tangential to a line of constant φ. These are known as lines of
shear stress or shear lines.
Substituting φ in the second of Eqs. (3.15), we have

τzs = −∂φ

∂x
l− ∂φ

∂y
m

Fig. 3.5

Lines of shear stress.
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which may be written, from Fig. 3.5, as

τzx = −∂φ

∂x

dx

dn
− ∂φ

∂y

dy

dn
= −∂φ

∂n
(3.16)

where, in this case, the direction cosines l and m are defined in terms of an elemental normal of
length δn.
Therefore, we have shown that the resultant shear stress at any point is tangential to the line of shear

stress through the point and has a value equal tominus the derivative of φ in a direction normal to the line.

Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radius R which is
subjected to equal and opposite torques T at each of its free ends.

If we assume an origin of axes at the center of the bar, the equation of its surface is given by

x2+ y2 = R2

If we now choose a stress function of the form

φ = C(x2+ y2−R2) (i)

the boundary condition φ = 0 is satisfied at every point on the boundary of the bar and the constant C
may be chosen to fulfill the remaining requirement of compatibility. Therefore, from Eqs. (3.11) and (i)

4C = −2Gdθ
dz

so that

C = −G
2

dθ

dz

and

φ = −Gdθ
dz

(x2+ y2−R2)|2 (ii)

Substituting for φ in Eq. (3.8)

T = −Gdθ
dz

(∫∫
x2 dxdy+

∫∫
y2 dxdy−R2

∫∫
dxdy

)

The first and second integrals in this equation both have the value πR4/4, whereas the third integral is
equal to πR2, the area of cross section of the bar. Then,

T = −Gdθ
dz

(
πR4

4
+ πR4

4
− πR4

)
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which gives

T = πR4

2
G
dθ

dz

that is,

T = GJ dθ
dz

(iii)

in which J = πR4/2= πD4/32 (D is the diameter), the polar second moment of area of the bar’s cross
section.
Substituting for G(dθ/dz) in Eq. (ii) from (iii)

φ = − T

2J
(x2+ y2−R2)

and from Eqs. (3.2)

τzy = −∂φ

∂x
= Tx

J
τzx = ∂φ

∂y
= −T

J
y

The resultant shear stress at any point on the surface of the bar is then given by

τ =
√

τ 2zy+ τ 2zx

that is,

τ = T

J

√
x2+ y2

that is,

τ = TR

J
(iv)

The preceding argument may be applied to any annulus of radius r within the cross section of the
bar so that the stress distribution is given by

τ = Tr

J

and therefore increases linearly from zero at the center of the bar to a maximum TR/J at the surface.

Example 3.2
A uniform bar has the elliptical cross section that is shown in Fig. 3.6 and is subjected to equal and
opposite torques T at each of its free ends. Derive expressions for the rate of twist in the bar, the shear
stress distribution, and the warping displacement of its cross section.
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Fig. 3.6

Torsion of a bar of elliptical cross section.

The semimajor and semiminor axes are a and b, respectively, so that the equation of its boundary is

x2

a2
+ y2

b2
= 1

If we choose a stress function of the form

φ = C
(
x2

a2
+ y2

b2
− 1
)
, (i)

then the boundary condition φ = 0 is satisfied at every point on the boundary and the constant C may
be chosen to fulfill the remaining requirement of compatibility. Thus, from Eqs. (3.11) and (i)

2C

(
1

a2
+ 1

b2

)
= −2Gdθ

dz

or

C = −Gdθ
dz

a2b2

(a2+ b2) (ii)

giving

φ = −Gdθ
dz

a2b2

(a2+ b2)
(
x2

a2
+ y2

b2
− 1
)

(iii)

Substituting this expression for φ in Eq. (3.8) establishes the relationship between the torque T and the
rate of twist

T = −2Gdθ
dz

a2b2

(a2+ b2)
(
1

a2

∫∫
x2dxdy+ 1

b2

∫∫
y2dxdy−

∫∫
dxdy

)

The first and second integrals in this equation are the second moments of area Iyy = πa3b/4 and
Ixx = πab3/4, whereas the third integral is the area of the cross section A= πab. Replacing the integrals
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by these values gives

T = Gdθ
dz

πa3b3

(a2+ b2) (iv)

from which (see Eq. (3.12))

J = πa3b3

(a2+ b2) (v)

The shear stress distribution is obtained in terms of the torque by substituting for the product
G(dθ/dz) in Eq. (iii) fromEq. (iv) and then differentiating as indicated by the relationships of Eqs. (3.2).
Thus,

τzx = − 2Ty

πab3
τzy = 2Tx

πa3b
(vi)

So far we have solved for the stress distribution, Eqs. (vi), and the rate of twist, Eq. (iv). It remains
to determine the warping distribution w over the cross section. For this we return to Eqs. (3.10) which
become, on substituting from the preceding for τzx ,τzy, and dθ/dz

∂w

∂x
= − 2Ty

πab3G
+ T

G

(a2+ b2)
πa3b3

y
∂w

∂y
= 2Tx

πa3bG
− T

G

(a2+ b2)
πa3b3

x

or

∂w

∂x
= T

πa3b3G
(b2− a2)y ∂w

∂y
= T

πa3b3G
(b2− a2)x (vii)

Integrating both of Eqs. (vii)

w= T(b2− a2)
πa3b3G

yx+ f1( y) w= T(b2− a2)
πa3b3G

xy+ f2(x)
The warping displacement given by each of these equations must have the same value at identical points
(x, y). It follows that f1(y) = f2(x) = 0. Hence,

w= T(b2− a2)
πa3b3G

xy (viii)

Lines of constant w, therefore, describe hyperbolas with the major and minor axes of the elliptical cross
section as asymptotes. Further, for a positive (anticlockwise) torque the warping is negative in the first
and third quadrants (a> b) and positive in the second and fourth.

3.2 ST. VENANT WARPING FUNCTION SOLUTION
In formulating his stress function solution, Prandtl made assumptions concerned with the stress dis-
tribution in the bar. The alternative approach presented by St. Venant involves assumptions as to the
mode of displacement of the bar—namely, that cross sections of a bar subjected to torsion maintain
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their original unloaded shape, although they may suffer warping displacements normal to their plane.
The first of these assumptions leads to the conclusion that cross sections rotate as rigid bodies about
a center of rotation or twist. This fact was also found to derive from the stress function approach of
Section 3.1 so that, referring to Fig. 3.4 and Eq. (3.9), the components of displacement in the x and y
directions of a point P in the cross section are

u= −θy v = θx

It is also reasonable to assume that the warping displacement w is proportional to the rate of twist and
is therefore constant along the length of the bar. Hence, we may define w by the equation

w= dθ

dz
ψ(x,y), (3.17)

where ψ(x,y) is the warping function.
The assumed form of the displacements u, v, and wmust satisfy the equilibrium and force boundary

conditions of the bar.We note here that it is unnecessary to investigate compatibility, as we are concerned
with displacement forms which are single-valued functions and therefore automatically satisfy the
compatibility requirement.
The components of strain corresponding to the assumed displacements are obtained fromEqs. (1.18)

and (1.20) and are

εx= εy = εz = γxy = 0

γzx= ∂w

∂x
+ ∂u

∂z
= dθ

dz

(
∂ψ

∂x
− y
)

γzy= ∂w

∂y
+ ∂ν

∂z
= dθ

dz

(
∂ψ

∂y
+ x
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.18)

The corresponding components of stress are, from Eqs. (1.42) and (1.46)

σx= σy = σz = τxy = 0

τzx= Gdθ
dz

(
∂ψ

∂x
− y
)

τzy= Gdθ
dz

(
∂ψ

∂y
+ x
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.19)

Ignoring body forces, we see that these equations identically satisfy the first two of the equilibrium
equations (1.5) and also that the third is fulfilled if the warping function satisfies the equation

∂2ψ

∂x2
+ ∂2ψ

∂y2
= ∇2ψ = 0 (3.20)

The direction cosine n is zero on the cylindrical surface of the bar, and so the first two of the
boundary conditions (Eqs. (1.7)) are identically satisfied by the stresses of Eqs. (3.19). The third equation
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simplifies to (
∂ψ

∂y
+ x
)
m+

(
∂ψ

∂x
− y
)
l = 0 (3.21)

It may be shown, but not as easily as in the stress function solution, that the shear stresses defined in
terms of the warping function in Eqs. (3.19) produce zero resultant shear force over each end of the bar
[Ref. 1]. The torque is found in a similar manner to that in Section 3.1 where, by reference to Fig. 3.3,
we have

T =
∫∫

(τzyx− τzxy)dxdy

or

T = Gdθ
dz

∫∫ [(
∂ψ

∂y
+ x
)
x−

(
∂ψ

∂x
− y
)
y

]
dxdy (3.22)

By comparison with Eq. (3.12) the torsion constant J is now, in terms of ψ

J =
∫∫ [(

∂ψ

∂y
+ x
)
x−

(
∂ψ

∂x
− y
)
y

]
dxdy (3.23)

The warping function solution to the torsion problem reduces to the determination of the warping
function ψ which satisfies Eqs. (3.20) and (3.21). The torsion constant and the rate of twist follow from
Eqs. (3.23) and (3.22); the stresses and strains from Eqs. (3.19) and (3.18); and, finally, the warping
distribution from Eq. (3.17).

3.3 THE MEMBRANE ANALOGY
Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily shaped bar to the
deflected shape of a membrane. The latter is a thin sheet of material which relies for its resistance to
transverse loads on internal in-plane or membrane forces.
Suppose that amembrane has the sameexternal shape as the cross section of a torsion bar (Fig. 3.7(a)).

It supports a transverse uniform pressure q and is restrained along its edges by a uniform tensile force
N /unit length as shown in Fig. 3.7(a) and (b). It is assumed that the transverse displacements of the
membrane are small so that N remains unchanged as the membrane deflects. Consider the equilibrium
of an element δxδ of the membrane. Referring to Fig. 3.8 and summing forces in the z direction, we
have

−Nδy
∂w

∂x
−Nδy

(
−∂w

∂x
− ∂2w

∂x2
δx

)
−Nδx

∂w

∂y
−Nδx

(
−∂w

∂y
− ∂2w

∂y2
δx

)
+ qδxδy= 0

or

∂2w

∂x2
+ ∂2w

∂y2
= ∇2w= − q

N
(3.24)
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Fig. 3.7

Membrane analogy: in-plane and transverse loading.

Fig. 3.8

Equilibrium of element of membrane.

Equation (3.24) must be satisfied at all points within the boundary of the membrane. Furthermore,
at all points on the boundary

w= 0 (3.25)

and we see that by comparing Eqs. (3.24) and (3.25) with Eqs. (3.11) and (3.7), w is analogous to φ

when q is constant. Thus, if the membrane has the same external shape as the cross section of the bar,
then

w(x,y) = φ(x,y)
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and
q

N
= −F = 2Gdθ

dz

The analogy now being established, we may make several useful deductions relating the deflected
form of the membrane to the state of stress in the bar.
Contour lines or lines of constant w correspond to lines of constant φ or lines of shear stress in the

bar. The resultant shear stress at any point is tangential to the membrane contour line and equal in value
to the negative of the membrane slope, ∂w/∂n, at that point, the direction n being normal to the contour
line (see Eq. (3.16)). The volume between the membrane and the xy plane is

Vol=
∫∫

w dxdy

and we see that by comparison with Eq. (3.8)

T = 2Vol
The analogy therefore provides an extremely useful method of analyzing torsion bars possessing

irregular cross sections for which stress function forms are not known. Hetényi [Ref. 2] describes
experimental techniques for this approach. In addition to the strictly experimental use of the analogy, it
is also helpful in the visual appreciation of a particular torsion problem. The contour lines often indicate
a form for the stress function, enabling a solution to be obtained by the method of Section 3.1. Stress
concentrations are made apparent by the closeness of contour lines, where the slope of the membrane
is large. These are in evidence at sharp internal corners, cut-outs, discontinuities, and so on.

3.4 TORSION OF A NARROW RECTANGULAR STRIP
In Chapter 17, we shall investigate the torsion of thin-walled open section beams, the development of
the theory being based on the analysis of a narrow rectangular strip subjected to torque. We now conve-
niently apply the membrane analogy to the torsion of such a strip shown in Fig. 3.9. The corresponding
membrane surface has the same cross-sectional shape at all points along its length except for small
regions near its ends where it flattens out. If we ignore these regions and assume that the shape of the
membrane is independent of y, then Eq. (3.11) simplifies to

d2φ

dx2
= −2Gdθ

dz

Integrating twice

φ = −Gdθ
dz
x2+Bx+C

Substituting the boundary conditions φ = 0 at x = ±t/2, we have

φ = −Gdθ
dz

[
x2−

(
t

2

)2]
(3.26)
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Fig. 3.9

Torsion of a narrow rectangular strip.

Although φ does not disappear along the short edges of the strip and therefore does not give an exact
solution, the actual volume of the membrane differs only slightly from the assumed volume so that
the corresponding torque and shear stresses are reasonably accurate. Also, the maximum shear stress
occurs along the long sides of the strip where the contours are closely spaced, indicating, in any case,
that conditions in the end region of the strip are relatively unimportant.
The stress distribution is obtained by substituting Eq. (3.26) in Eqs. (3.2), and then

τzy = 2Gx dθ
dz

τzx = 0 (3.27)

the shear stress varying linearly across the thickness and attaining a maximum

τzy,max = ±Gt dθ
dz

(3.28)

at the outside of the long edges as predicted. The torsion constant J follows from the substitution of
Eq. (3.26) into (3.13), giving

J = st3

3
(3.29)

and

τzy,max = 3T

st3

These equations represent exact solutions when the assumed shape of the deflected membrane is
the actual shape. This condition arises only when the ratio s/t approaches infinity; however, for ratios
in excess of 10, the error is of the order of only 6 percent. Obviously, the approximate nature of the
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solution increases as s/t decreases. Therefore, in order to retain the usefulness of the analysis, a factor
μ is included in the torsion constant; that is,

J = μst3

3

Values of μ for different types of section are found experimentally and quoted in various references
[Refs. 3, 4]. We observe that as s/t approaches infinity, μ approaches unity.
The cross section of the narrow rectangular strip of Fig. 3.9 does not remain plane after loading

but suffers warping displacements normal to its plane; this warping may be determined using either of
Eqs. (3.10). From the first of these equations

∂w

∂x
= ydθ

dz
(3.30)

since τzx = 0 (see Eqs. (3.27)). Integrating Eq. (3.30), we obtain

w= xydθ
dz

+ constant (3.31)

Since the cross section is doubly symmetrical w= 0 at x = y= 0, so that the constant in Eq. (3.31) is
zero. Therefore

w= xydθ
dz

(3.32)

and the warping distribution at any cross section is as shown in Fig. 3.10.

Fig. 3.10

Warping of a thin rectangular strip.
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We should not close this chapter without mentioning alternative methods of solution of the torsion
problem. These in fact provide approximate solutions for the wide range of problems for which exact
solutions are not known. Examples of this approach are the numerical finite difference method and the
Rayleigh–Ritz method based on energy principles [Ref. 5].
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Problems
P.3.1 Show that the stress function φ = k(r2−a2) is applicable to the solution of a solid circular section bar of
radius a. Determine the stress distribution in the bar in terms of the applied torque, the rate of twist, and the warping
of the cross section.

Is it possible to use this stress function in the solution for a circular bar of hollow section?

Ans. τ = Tr/Ip, where Ip = πa4/2,

dθ/dz = 2T/Gπa4, w= 0 everywhere.
P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and hence derive the expressions
for stress distribution and rate of twist.

Ans. ψ = 0, τzx = −Ty
Ip
, τzy = Tx

Ip
, τzs = Tr

Ip
,
dθ

dz
= T

GIP

P.3.3 Show that the warping function ψ = kxy, in which k is an unknown constant, may be used to solve the
torsion problem for the elliptical section of Example 3.2.

P.3.4 Show that the stress function

φ = −Gdθ
dz

[
1

2
(x2+ y2) − 1

2a
(x3− 3xy2) − 2

27
a2
]

is the correct solution for a bar having a cross section in the form of the equilateral triangle shown in Fig. P.3.4.
Determine the shear stress distribution, the rate of twist, and the warping of the cross section. Find the position and
magnitude of the maximum shear stress.

Ans.
τzy = Gdθ

dz

(
x− 3x2

2a
+ 3y2

2a

)

τzx = −Gdθ
dz

(
y+ 3xy

a

)
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Fig. P.3.4

τmax (at center of each side) = −a
2
G
dθ

dz

dθ

dz
= 15

√
3T

Ga4

w= 1

2a

dθ

dz
(y3− 3x2y).

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the applied torque T for the section
comprising narrow rectangular strips shown in Fig. P.3.5.

Fig. P.3.5

Ans. τmax = 3T/(2a+ b)t2, dθ/dz = 3T/G(2a+b)t3.
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CHAPTER

4Virtual Work and Energy
Methods

Many structural problems are statically determinate; in other words, the support reactions and internal
force systemsmay be found using simple staticswhere the number of unknowns is equal to the number of
equations of equilibrium available. In caseswhere the number of unknowns exceeds the possible number
of equations of equilibrium—for example, a propped cantilever beam—other methods of analysis are
required.
The methods fall into two categories and are based on two important concepts; the first, which is

presented in this chapter, is the principle of virtual work. This is the most fundamental and powerful
tool available for the analysis of statically indeterminate structures and has the advantage of being
able to deal with conditions other than those in the elastic range. The second, based on strain energy,
can provide approximate solutions of complex problems for which exact solutions do not exist and is
discussed in Chapter 5. In some cases, the two methods are equivalent, since, although the governing
equations differ, the equations themselves are identical.
In modern structural analysis, computer-based techniques are widely used; these include the flexi-

bility and stiffness methods (see Chapter 6). However, the formulation of, say, stiffness matrices for the
elements of a complex structure is based on one of the preceding approaches so that a knowledge and
understanding of their application is advantageous.

4.1 WORK
Before we consider the principle of virtual work in detail, it is important to clarify exactly what is meant
by work. The basic definition of work in elementary mechanics is that “work is done when a force
moves its point of application”. However, we shall require a more exact definition, since we shall be
concerned with work done by both forces and moments and with the work done by a force when the
body on which it acts is given a displacement, which is not coincident with the line of action of the
force.
Consider the force, F, acting on a particle, A, in Fig. 4.1(a). If the particle is given a displacement,�,

by some external agency so that it moves to A′ in a direction at an angle α to the line of action of F, the
work, WF , done by F is given by

WF = F(�cosα) (4.1)

or

WF = (F cosα)� (4.2)

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00004-X 85
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Fig. 4.1

Work done by a force and a moment.

Therefore, we see that the work done by the force, F, as the particle moves fromA toA′may be regarded
as either the product of F and the component of � in the direction of F (Eq. (4.1)) or as the product of
the component of F in the direction of � and � (Eq. (4.2)).
Now, consider the couple (pure moment) in Fig. 4.1(b) and suppose that the couple is given a small

rotation of θ radians. The work done by each force F is then F(a/2)θ so that the total work done, WC,
by the couple is

WC = F a
2
θ +F a

2
θ = Faθ

It follows that the work done, WM , by the pure moment, M, acting on the bar AB in Fig. 4.1(c) as it is
given a small rotation, θ , is

WM =Mθ (4.3)

Note that in the preceding, the force, F, and moment, M, are in position before the displacements
take place and are not the cause of them. Also, in Fig. 4.1(a), the component of � parallel to the
direction of F is in the same direction as F; if it had been in the opposite direction, the work done would
have been negative. The same argument applies to the work done by the moment, M, where we see in
Fig. 4.1(c) that the rotation, θ , is in the same sense as M. Note also that if the displacement, �, had
been perpendicular to the force, F, no work would have been done by F.
Finally, it should be remembered that work is a scalar quantity since it is not associatedwith direction

(in Fig. 4.1(a) the force F does work if the particle is moved in any direction). Thus, the work done by
a series of forces is the algebraic sum of the work done by each force.

4.2 PRINCIPLE OF VIRTUAL WORK
The establishment of the principle will be carried out in stages. First we shall consider a particle, then a
rigid body, and finally a deformable body, which is the practical application we require when analyzing
structures.
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4.2.1 Principle of Virtual Work for a Particle
In Fig. 4.2, a particle, A, is acted on by a number of concurrent forces, F1,F2, . . . ,Fk , . . . ,Fr ; the resultant
of these forces is R. Suppose that the particle is given a small arbitrary displacement, �v, to A′ in some
specified direction; �v is an imaginary or virtual displacement and is sufficiently small so that the
directions of F1,F2, and so on are unchanged. Let θR be the angle that the resultant, R, of the forces
makes with the direction of �v and θ1,θ2, . . . ,θk , . . . ,θr the angles that F1,F2, . . . ,Fk , . . . ,Fr make with
the direction of �v, respectively. Then, from either of Eqs. (4.1) or (4.2), the total virtual work, WF ,
done by the forces Fas the particle moves through the virtual displacement, �v, is given by

WF = F1�v cosθ1+F2�v cosθ2+ ·· ·+Fk�v cosθk + ·· ·+Fr�v cosθr
Thus,

WF =
r∑
k=1
Fk�v cosθk

or, since �v is a fixed, although imaginary displacement,

WF = �v

r∑
k=1
Fk cosθk (4.4)

In Eq. (4.4),
∑r
k=1Fk cos θk is the sum of all the components of the forces, F, in the direction of

�v and therefore must be equal to the component of the resultant, R, of the forces, F, in the direction
of �v; that is,

WF = �v

r∑
k=1
Fk cosθk = �vRcosθR (4.5)

Fig. 4.2

Virtual work for a system of forces acting on a particle.
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If the particle, A, is in equilibrium under the action of the forces, F1,F2, . . . ,Fk , . . . ,Fr , the resultant, R,
of the forces is zero. It follows from Eq. (4.5) that the virtual work done by the forces, F, during the
virtual displacement, �v, is zero.
We can, therefore, state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces, the total work done by the forces
for a small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is not in equilibrium
if the virtual displacement is taken to be in a direction perpendicular to their resultant, R. We cannot,
therefore, state the converse of the preceding principle unless we specify that the total work done must
be zero for any arbitrary displacement. Thus:

A particle is in equilibrium under the action of a system of forces if the total work done by the forces
is zero for any virtual displacement of the particle.

Note that in the preceding, �v is a purely imaginary displacement and is not related in any way to the
possible displacement of the particle under the action of the forces, F.�v has been introduced purely as
a device for setting up the work–equilibrium relationship of Eq. (4.5). The forces, F, therefore remain
unchanged in magnitude and direction during this imaginary displacement; this would not be the case
if the displacement were real.

4.2.2 Principle of Virtual Work for a Rigid Body
Consider the rigid body shown in Fig. 4.3, which is acted on by a system of external forces,
F1,F2, . . . ,Fk , . . . ,Fr . These external forces will induce internal forces in the body, which may be
regarded as comprising an infinite number of particles; on adjacent particles, such as A1 and A2, these

Fig. 4.3

Virtual work for a rigid body.
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internal forces will be equal and opposite, in other words self-equilibrating. Suppose now that the rigid
body is given a small, imaginary—that is, virtual—displacement, �v (or a rotation or a combination of
both), in some specified direction. The external and internal forces then do virtual work, and the total
virtual work done, Wt , is the sum of the virtual work, We, done by the external forces and the virtual
work, Wi, done by the internal forces. Thus,

Wt =We+Wi (4.6)

Since the body is rigid, all the particles in the bodymove through the same displacement,�v, so that the
virtual work done on all the particles is numerically the same. However, for a pair of adjacent particles,
such as A1 and A2 in Fig. 4.3, the self-equilibrating forces are in opposite directions, which means that
the work done on A1 is opposite in sign to the work done on A2. Therefore, the sum of the virtual work
done on A1 and A2 is zero. The argument can be extended to the infinite number of pairs of particles in
the body from which we conclude that the internal virtual work produced by a virtual displacement in
a rigid body is zero. Equation (4.6) then reduces to

Wt =We (4.7)

Since the body is rigid and the internal virtual work is therefore zero, we may regard the body as
a large particle. It follows that if the body is in equilibrium under the action of a set of forces,
F1,F2, . . . ,Fk , . . . ,Fr , the total virtual work done by the external forces during an arbitrary virtual
displacement of the body is zero.

Example 4.1
Calculate the support reactions in the simply supported beam shown in Fig. 4.4.

Only a vertical load is applied to the beam so that only vertical reactions, RA and RC, are produced.
Suppose that the beam at C is given a small imaginary—that is, a virtual—displacement, �v,C, in

the direction of RC as shown in Fig. 4.4(b). Since we are concerned here solely with the external forces
acting on the beam, we may regard the beam as a rigid body. Therefore, the beam rotates about A so
that C moves to C′ and B moves to B′. From similar triangles, we see that

�v,B = a

a+ b�v,C = a

L
�v,C (i)

The total virtual work, Wt , done by all the forces acting on the beam is then given by

Wt = RC�v,C−W�v,B (ii)

Note that the work done by the load,W , is negative, since�v,B is in the opposite direction to its line of
action. Note also that the support reaction, RA, does no work since the beam only rotates about A. Now
substituting for �v,B in Eq. (ii) from Eq. (i), we have

Wt = RC�v,C−W a
L

�v,C (iii)

Since the beam is in equilibrium, Wt is zero from the principal of virtual work. Hence, from Eq. (iii)

RC�v,C−W a
L

�v,C = 0
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Fig. 4.4

Use of the principle of virtual work to calculate support reactions.
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which gives

RC =W a
L

which is the result that would have been obtained from a consideration of the moment equilibrium of
the beam about A. RA follows in a similar manner. Suppose now that instead of the single displacement
�v,C, the complete beam is given a vertical virtual displacement, �v, together with a virtual rotation,
θv, about A as shown in Fig. 4.4(c). The total virtual work, Wt , done by the forces acting on the beam
is now given by

Wt = RA�v−W(�v+ aθv) +RC(�v+ Lθv) = 0 (iv)

since the beam is in equilibrium. Rearranging Eq. (iv)

(RA+RC−W)�v+ (RCL−Wa)θv = 0 (v)

Equation (v) is valid for all values of �v and θv so that

RA+RC−W = 0 RCL−Wa= 0
which are the equations of equilibriumwewould have obtained by resolving forces vertically and taking
moments about A.
It is not being suggested here that the application of the principles of statics should be abandoned

in favor of the principle of virtual work. The purpose of Example 4.1 is to illustrate the application of
a virtual displacement and the manner in which the principle is used.

4.2.3 Virtual Work in a Deformable Body
In structural analysis, we are not generally concerned with forces acting on a rigid body. Structures
and structural members deform under load, which means that if we assign a virtual displacement to a
particular point in a structure, not all points in the structure will suffer the same virtual displacement as
would be the case if the structure were rigid. This means that the virtual work produced by the internal
forces is not zero as it is in the rigid body case since the virtual work produced by the self-equilibrating
forces on adjacent particles does not cancel out. The total virtual work produced by applying a virtual
displacement to a deformable body acted on by a system of external forces is therefore given by
Eq. (4.6).
If the body is in equilibrium under the action of the external force system, then every particle in the

body is also in equilibrium. Therefore, from the principle of virtual work, the virtual work done by the
forces acting on the particle is zero irrespective of whether the forces are external or internal. It follows
that, since the virtual work is zero for all particles in the body, it is zero for the complete body and
Eq. (4.6) becomes

We+Wi = 0 (4.8)

Note that in the preceding argument, only the conditions of equilibrium and the concept of work are
employed. Therefore, Eq. (4.8) does not require the deformable body to be linearly elastic (i.e., it need
not obey Hooke’s law) so that the principle of virtual work may be applied to any body or structure that
is rigid, elastic, or plastic. The principle does require that displacements, whether real or imaginary,
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must be small, so that we may assume that external and internal forces are unchanged in magnitude and
direction during the displacements. In addition, the virtual displacements must be compatible with the
geometry of the structure and the constraints that are applied, such as those at a support. The exception is
the situation we have in Example 4.1, where we apply a virtual displacement at a support. This approach
is valid since we include the work done by the support reactions in the total virtual work equation.

4.2.4 Work Done by Internal Force Systems
The calculation of the work done by an external force is straightforward in that it is the product of
the force and the displacement of its point of application in its own line of action (Eqs. (4.1), (4.2), or
(4.3)), whereas the calculation of the work done by an internal force system during a displacement is
much more complicated. Generally, no matter how complex a loading system is, it may be simplified
to a combination of up to four load types: axial load, shear force, bending moment, and torsion; these
in turn produce corresponding internal force systems. We shall now consider the work done by these
internal force systems during arbitrary virtual displacements.

Axial Force
Consider the elemental length, δx, of a structural member as shown in Fig. 4.5 and suppose that it is
subjected to a positive internal force system comprising a normal force (i.e., axial force), N ; a shear

Fig. 4.5

Virtual work due to internal force system.
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force, S; a bending moment, M; and a torque, T , produced by some external loading system acting on
the structure of which the member is part. The stress distributions corresponding to these internal forces
are related to an axis system whose origin coincides with the centroid of area of the cross section. We
shall, in fact, be using these stress distributions in the derivation of expressions for internal virtual work
in linearly elastic structures so that it is logical to assume the same origin of axes here; we shall also
assume that the y axis is an axis of symmetry. Initially, we shall consider the normal force, N .
The direct stress, σ , at any point in the cross section of the member is given by σ =N /A. Therefore,

the normal force on the element δA at the point (z, y) is

δN = σδA= N

A
δA

Suppose now that the structure is given an arbitrary virtual displacement which produces a virtual axial
strain, εv, in the element. The internal virtual work, δwi,N , done by the axial force on the elemental
length of the member is given by

δwi,N =
∫
A

N

A
dAεv δx

which, since
∫
AdA=A, reduces to

δwi,N = Nεv δx (4.9)

In other words, the virtual work done by N is the product of N and the virtual axial displacement of
the element of the member. For a member of length L, the virtual work, wi,N , done during the arbitrary
virtual strain is then

wi,N =
∫
L

Nεv dx (4.10)

For a structure comprising a number of members, the total internal virtual work, Wi,N , done by axial
force is the sum of the virtual work of each of the members. Therefore,

wi,N =
∑∫

L

Nεv dx (4.11)

Note that in the derivation of Eq. (4.11), we have made no assumption regarding the material properties
of the structure so that the relationship holds for nonelastic as well as elastic materials. However, for a
linearly elastic material—in other words, one that obeys Hooke’s law—we can express the virtual strain
in terms of an equivalent virtual normal force:

εv = σv

E
= Nv
EA

Therefore, if we designate the actual normal force in a member by NA, Eq. (4.11) may be expressed in
the form

wi,N =
∑∫

L

NANv
EA

dx (4.12)
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Shear Force
The shear force, S, acting on themember section in Fig. 4.5 produces a distribution of vertical shear stress
which depends on the geometry of the cross section. However, since the element, δA, is infinitesimally
small, we may regard the shear stress, τ , as constant over the element. The shear force, δS, on the
element is then

δS = τ δA (4.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a virtual shear
strain, γv, at the element. This shear strain represents the angular rotation in a vertical plane of the
element δA×δx relative to the longitudinal centroidal axis of the member. The vertical displacement
at the section being considered is, therefore, γv δx. The internal virtual work, δwi,S , done by the shear
force, S, on the elemental length of the member is given by

δwi,S =
∫
A

τ dAγv δx

A uniform shear stress through the cross section of a beam may be assumed if we allow for the actual
variation by including a form factor, β [Ref. 1]. The expression for the internal virtual work in the
member may then be written as

δwi,S =
∫
A

β

(
S

A

)
dAγv δx

or

δwi,S = βSγv δx (4.14)

Hence, the virtual work done by the shear force during the arbitrary virtual strain in a member of length
L is

wi,S = β

∫
L

Sγv dx (4.15)

For a linearly elastic member, as in the case of axial force, we may express the virtual shear strain, γv,
in terms of an equivalent virtual shear force, Sv:

γv = τv

G
= Sv
GA

so that from Eq. (4.15)

wi,S = β

∫
L

SASv
GA

dx (4.16)

For a structure comprising a number of linearly elastic members the total internal work, Wi,S , done by
the shear forces is

Wi,S =
∑

β

∫
L

SASv
GA

dx (4.17)
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Bending Moment
The bending moment, M, acting on the member section in Fig. 4.5 produces a distribution of direct
stress, σ , through the depth of the member cross section. The normal force on the element, δA, cor-
responding to this stress is therefore σ δA. Again we shall suppose that the structure is given a small
arbitrary virtual displacement which produces a virtual direct strain, εv, in the element δA×δx. Thus,
the virtual work done by the normal force acting on the element δA is σ δAεv δx. Hence, integrating
over the complete cross section of the member, we obtain the internal virtual work, δwi,M , done by the
bending moment, M, on the elemental length of member:

δwi,M =
∫
A

σ dAεv δx (4.18)

The virtual strain, εv, in the element δA×δx is, from Eq. (15.2), given by

εv = y

Rv

where Rv is the radius of curvature of the member produced by the virtual displacement. Thus,
substituting for εv in Eq. (4.18), we obtain

δwi,M =
∫
A

σ
y

Rv
dAδx

or, since σyδA is the moment of the normal force on the element, δA, about the z axis,

δwi,M = M

Rv
δx

Therefore, for a member of length L, the internal virtual work done by an actual bending moment,MA,
is given by

wi,M =
∫
L

MA
Rv
dx (4.19)

In the derivation of Eq. (4.19), no specific stress–strain relationship has been assumed, so that it is
applicable to a nonlinear system. For the particular case of a linearly elastic system, the virtual curvature
1/Rv may be expressed in terms of an equivalent virtual bending moment, Mv, using the relationship of
Eq. (15.8):

1

Rv
= Mv
EI

Substituting for 1/Rv in Eq. (4.19), we have

wi,M =
∫
L

MAMv
EI

dx (4.20)
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so that for a structure comprising a number of members the total internal virtual work, Wi,M , produced
by bending is

Wi,M =
∑∫

L

MAMv
EI

dx (4.21)

Torsion
The internal virtual work, wi,T , due to torsion in the particular case of a linearly elastic circular section
bar may be found in a similar manner and is given by

wi,T =
∫
L

TATv
GIo

dx (4.22)

in which Io is the polar second moment of area of the cross section of the bar (see Example 3.1). For
beams of noncircular cross section, Io is replaced by a torsion constant, J , which, for many practical
beam sections is determined empirically.

Hinges
In some cases, it is convenient to impose a virtual rotation, θv, at some point in a structural member
where, say, the actual bending moment is MA. The internal virtual work done byMA is thenMAθv (see
Eq. (4.3)); physically this situation is equivalent to inserting a hinge at the point.

Sign of Internal Virtual Work
So far we have derived expressions for internal work without considering whether it is positive or
negative in relation to external virtual work. Suppose that the structural member, AB, in Fig. 4.6(a) is,
say, a member of a truss and that it is in equilibrium under the action of two externally applied axial
tensile loads, P; clearly the internal axial, that is normal, force at any section of the member is P.
Suppose now that the member is given a virtual extension, δv, such that B moves to B′. Then the

virtual work done by the applied load, P, is positive, since the displacement, δv, is in the same direction

Fig. 4.6

Sign of the internal virtual work in an axially loaded member.
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as its line of action. However, the virtual work done by the internal force, N (=P), is negative, since the
displacement of B is in the opposite direction to its line of action; in other words, work is done on the
member. Thus, from Eq. (4.8), we see that in this case

We =Wi (4.23)

Equation (4.23) would apply if the virtual displacement had been a contraction and not an extension,
in which case the signs of the external and internal virtual work in Eq. (4.8) would have been reversed.
Clearly, the preceding applies equally if P is a compressive load. The previous arguments may be
extended to structural members subjected to shear, bending, and torsional loads, so that Eq. (4.23) is
generally applicable.

4.2.5 Virtual Work due to External Force Systems
So far in our discussion, we have only considered the virtual work produced by externally applied
concentrated loads. For completeness, we must also consider the virtual work produced by moments,
torques, and distributed loads.
InFig. 4.7, a structuralmember carries a distributed load,w(x), and at a particular point a concentrated

load,W ; a moment,M; and a torque, T . Suppose that at the point a virtual displacement is imposed that
has translational components, �v,y and �v,x, parallel to the y and x axes, respectively, and rotational
components, θv and φv, in the yx and zy planes, respectively.
If we consider a small element, δx, of the member at the point, the distributed load may be regarded

as constant over the length δx and acting, in effect, as a concentrated load w(x)δx. The virtual work,
we, done by the complete external force system is therefore given by

we =W�v,y+P�v,x +Mθv+ Tφv+
∫
L

w(x)�v,y dx

Fig. 4.7

Virtual work due to externally applied loads.
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For a structure comprising a number of load positions, the total external virtual work done is then

We =
∑⎡

⎣W�v,y+P�v,x +Mθv+ Tφv+
∫
L

w(x)�v,y dx

⎤
⎦ (4.24)

In Eq. (4.24), there need not be a complete set of external loads applied at every loading point, so in
fact the summation is for the appropriate number of loads. Further, the virtual displacements in the
preceding are related to forces and moments applied in a vertical plane. We could, of course, have
forces and moments and components of the virtual displacement in a horizontal plane, in which case
Eq. (4.24) would be extended to include their contribution.
The internal virtual work equivalent of Eq. (4.24) for a linear system is, from Eqs. (4.12), (4.17),

(4.21), and (4.22)

Wi =
∑⎡

⎣∫
L

NANv
EA

dx+ β

∫
L

SASv
GA

dx+
∫
L

MAMv
EI

dx+
∫
L

TATv
GJ

dx+MAθv

⎤
⎦

(4.25)
in which the last term on the right-hand side is the virtual work produced by an actual internal moment
at a hinge (see preceding). Note that the summation in Eq. (4.25) is taken over all the members of the
structure.

4.2.6 Use of Virtual Force Systems
So far, in all the structural systems we have considered, virtual work has been produced by actual forces
moving through imposed virtual displacements. However, the actual forces are not related to the virtual
displacements in any way, since, as we have seen, the magnitudes and directions of the actual forces are
unchanged by the virtual displacements so long as the displacements are small. Thus, the principle of
virtual work applies for any set of forces in equilibrium and any set of displacements. Equally, therefore,
we could specify that the forces are a set of virtual forces in equilibrium and that the displacements are
actual displacements. Therefore, instead of relating actual external and internal force systems through
virtual displacements, we can relate actual external and internal displacements through virtual forces.
If we apply a virtual force system to a deformable body, it will induce an internal virtual force system

which will move through the actual displacements; internal virtual work will therefore be produced. In
this case, for example, Eq. (4.10) becomes

wi,N =
∫
L

NvεA dx

in which Nv is the internal virtual normal force and εA is the actual strain. Then, for a linear system, in
which the actual internal normal force is NA, εA=NA/EA, so that for a structure comprising a number
of members, the total internal virtual work due to a virtual normal force is

Wi,N =
∑∫

L

NvNA
EA

dx

which is identical to Eq. (4.12). Equations (4.17), (4.21), and (4.22) may be shown to apply to virtual
force systems in a similar manner.
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4.3 APPLICATIONS OF THE PRINCIPLE OF VIRTUAL WORK
We have now seen that the principle of virtual work may be used either in the form of imposed virtual
displacements or in the form of imposed virtual forces. Generally the former approach, as we saw in
Example 4.1, is used to determine forces, while the latter is used to obtain displacements.
For statically determinate structures, the use of virtual displacements to determine force systems is

a relatively trivial use of the principle, although problems of this type provide a useful illustration of the
method. The real power of this approach lies in its application to the solution of statically indeterminate
structures. However, the use of virtual forces is particularly useful in determining actual displacements
of structures. We shall illustrate both approaches by examples.

Example 4.2
Determine the bending moment at the point B in the simply supported beam ABC shown in
Fig. 4.8(a).

We determined the support reactions for this particular beam in Example 4.1. In this example,
however, we are interested in the actual internal moment, MB, at the point of application of the load.
Therefore, we must impose a virtual displacement, which will relate the internal moment at B to the
applied load and exclude other unknown external forces, such as the support reactions, and unknown
internal force systems, such as the bendingmoment distribution along the length of the beam. Therefore,

Fig. 4.8

Determination of bending moment at a point in the beam of Example 4.2 using virtual work.
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ifwe imagine that the beam is hinged atBand that the lengthsABandBCare rigid, a virtual displacement,
�v,B, at B will result in the displaced shape shown in Fig. 4.8(b).
Note that the support reactions at A and C do no work and that the internal moments in AB and BC

do no work because AB and BC are rigid links. From Fig. 4.8(b)

�v,B = aβ = bα (i)

Hence,

α = a

b
β

and the angle of rotation of BC relative to AB is then

θB = β + α = β
(
1+ a

b

)
= L

b
β (ii)

Now equating the external virtual work done by W to the internal virtual work done by MB (see
Eq. (4.23)), we have

W�v,B =MBθB (iii)

Substituting in Eq. (iii) for �v,B from Eq. (i) and for θB from Eq. (ii), we have

Waβ =MB L
b

β

which gives

MB = Wab

L

which is the result we would have obtained by calculating themoment of RC (=Wa/L fromExample 4.1)
about B.

Example 4.3
Determine the force in the member AB in the truss shown in Fig. 4.9(a).

We are required to calculate the force in the member AB, so that again we need to relate this internal
force to the externally applied loads without involving the internal forces in the remaining members of
the truss. We therefore impose a virtual extension, �v,B, at B in the member AB, such that B moves
to B′. If we assume that the remaining members are rigid, the forces in them will do no work. Further,
the triangle BCD will rotate as a rigid body about D to B′C′D as shown in Fig. 4.9(b). The horizontal
displacement of C, �C, is then given by

�C = 4α
while

�v,B = 3α
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Fig. 4.9

Determination of the internal force in a member of a truss using virtual work.

Hence,

�C = 4�v,B
3

(i)

Equating the external virtual work done by the 30kN load to the internal virtual work done by the
force, FBA, in the member, AB, we have (see Eq. (4.23) and Fig. 4.6)

30�C = FBA�v,B (ii)

Substituting for �C from Eq. (i) in Eq. (ii),

30× 4

3
�v,B = FBA�v,B

Hence,

FBA = +40kN (i.e., FBA is tensile)

In the preceding we are, in effect, assigning a positive (i.e., tensile) sign to FBA by imposing a virtual
extension on the member AB.
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The actual sign of FBA is then governed by the sign of the external virtual work. Thus, if the 30kN
load had been in the opposite direction to �C, the external work done would have been negative, so
that FBA would be negative and therefore compressive. This situation can be verified by inspection.
Alternatively, for the loading as shown in Fig. 4.9(a), a contraction in AB would have implied that FBA
was compressive. In this case, DC would have rotated in an anticlockwise sense, and �C would have
been in the opposite direction to the 30kN load so that the external virtual work done would be negative,
resulting in a negative value for the compressive force FBA; FBA would therefore be tensile as before.
Note also that the 10kN load at D does no work, since D remains undisplaced.
We shall now consider problems involving the use of virtual forces. Generally, we shall require the

displacement of a particular point in a structure, so that if we apply a virtual force to the structure at the
point and in the direction of the required displacement, the external virtual work donewill be the product
of the virtual force and the actual displacement, which may then be equated to the internal virtual work
produced by the internal virtual force system moving through actual displacements. Since the choice
of the virtual force is arbitrary, we may give it any convenient value; the simplest type of virtual force
is therefore a unit load, and the method then becomes the unit load method (see also Section 5.5).

Example 4.4
Determine the vertical deflection of the free end of the cantilever beam shown in Fig. 4.10(a).

Let us suppose that the actual deflection of the cantilever at B produced by the uniformly distributed
load is υB and that a vertically downward virtual unit load was applied at B before the actual deflection

Fig. 4.10

Deflection of the free end of a cantilever beam using the unit load method.
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took place. The external virtual work done by the unit load is, from Fig. 4.10(b), 1υB. The deflection, υB,
is assumed to be caused by bending only; in other words, we are ignoring any deflections due to shear.
The internal virtual work is given by Eq. (4.21), which, since only one member is involved, becomes

Wi,M =
L∫
0

MAMv
EI

dx (i)

The virtual moments, Mv, are produced by a unit load so that we shall replace Mv by M1. Then

Wi,M =
L∫
0

MAM1
EI

dx (ii)

At any section of the beam a distance x from the built-in end

MA = −w
2

(L− x)2 M1 = −1(L− x)
Substituting for MA and M1 in Eq. (ii) and equating the external virtual work done by the unit load to
the internal virtual work, we have

1υB =
L∫
0

w

2EI
(L− x)3 dx

which gives

υB = − w

2EI

[
1

4
(L− x)4

]L
0

so that

υB = wL4

8EI

Note that υB is in fact negative, but the positive sign here indicates that it is in the same direction as the
unit load.

Example 4.5
Determine the rotation—that is, the slope—of the beam ABC shown in Fig. 4.11(a) at A.

The actual rotation of the beam at A produced by the actual concentrated load, W , is θA. Let us
suppose that a virtual unit moment is applied at A before the actual rotation takes place, as shown in
Fig. 4.11(b). The virtual unit moment induces virtual support reactions of Rv,A (=1/L) acting downward
and Rv,C (=1/L) acting upward. The actual internal bending moments are

MA = +W
2
x 0 ≤ x ≤ L/2

MA = +W
2

(L− x) L/2 ≤ x ≤ L
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Fig. 4.11

Determination of the rotation of a simply supported beam at a support using the unit load method.

The internal virtual bending moment is

Mv = 1− 1

L
x 0 ≤ x ≤ L

The external virtual work done is 1θA (the virtual support reactions do no work as there is no vertical
displacement of the beam at the supports), and the internal virtual work done is given by Eq. (4.21).
Hence,

1θA = 1

EI

⎡
⎢⎣
L/2∫
0

W

2
x
(
1− x

L

)
dx+

L∫
L/2

W

2
(L− x)

(
1− x

L

)
dx

⎤
⎥⎦ (i)

Simplifying Eq. (i), we have

θA = W

2EIL

⎡
⎢⎣
L/2∫
0

(Lx− x2)dx+
L∫

L/2

(L− x)2dx
⎤
⎥⎦ (ii)
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Hence,

θA = W

2EIL

{[
L
x2

2
− x3

3

]L/2
0

− 1

3

[
(L− x)3]LL/2

}

from which

θA = WL2

16EI

Example 4.6
Calculate the vertical deflection of the joint B and the horizontal movement of support D in the truss
shown in Fig. 4.12(a). The cross-sectional area of each member is 1800mm2 and Young’s modulus, E,
for the material of the members is 200000N/mm2.

The virtual force systems—that is, unit loads—required to determine the vertical deflection of B and
the horizontal deflection of D are shown in Fig. 4.12(b) and (c), respectively. Therefore, if the actual
vertical deflection at B is δB,v and the horizontal deflection at D is δD,h, the external virtual work done
by the unit loads is 1δB,v and 1δD,h, respectively. The internal actual and virtual force systems comprise
axial forces in all the members.

Fig. 4.12

Deflection of a truss using the unit load method.
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These axial forces are constant along the length of each member so that for a truss comprising n
members, Eq. (4.12) reduces to

Wi,N =
n∑
j=1

FA,jFv,jLj
EjAj

(i)

in which FA, j and Fv, j are the actual and virtual forces in the jth member, which has a length Lj, an area
of cross-section Aj, and a Young’s modulus Ej.
Since the forces Fv, j are due to a unit load, we shall write Eq. (i) in the form

Wi,N =
n∑
j=1

FA, jF1, jLj
EjAj

(ii)

Also, in this particular example, the area of cross section, A, and Young’s modulus, E, are the same for
all members so that it is sufficient to calculate

∑n
j=1FA, jF1, jLj and then divide by EA to obtain Wi,N .

The forces in themembers, whether actual or virtual, may be calculated by themethod of joints. Note
that the support reactions corresponding to the three sets of applied loads (one actual and two virtual)
must be calculated before the internal force systems can be determined. However, in Fig. 4.12(c), it is
clear from inspection that F1,AB=F1,BC=F1,CD=+1, while the forces in all other members are zero.
The calculations are presented in Table 4.1; note that positive signs indicate tension and negative signs
compression.
Thus, equating internal and external virtual work done (Eq. (4.23)), we have

1δB,v = 1263.6× 106
200000× 1800

hence

δB,v = 3.51mm

Table 4.1

Member L (m) FA (kN) F1,B F1,D FAF1,BL (kNm) FAF1,DL (kNm)

AE 5.7 −84.9 −0.94 0 +451.4 0
AB 4.0 +60.0 +0.67 +1.0 +160.8 +240.0
EF 4.0 −60.0 −0.67 0 +160.8 0
EB 4.0 +20.0 +0.67 0 +53.6 0
BF 5.7 −28.3 +0.47 0 −75.2 0
BC 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CD 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CF 4.0 +100.0 0 0 0 0
DF 5.7 −113.1 −0.47 0 +301.0 0∑=+1263.6

∑=+880.0



Problems 107

and

1δD,h = 880× 106
200000× 1800

which gives

δD,h = 2.44mm

Both deflections are positive, which indicates that the deflections are in the directions of the applied
unit loads. Note that in the preceding, it is unnecessary to specify units for the unit load since the unit
load appears, in effect, on both sides of the virtual work equation (the internal F1 forces are directly
proportional to the unit load).

Reference
[1] Megson, T.H.G., Structural and Stress Analysis, 2nd edition, Elsevier, 2005.

Problems
P.4.1 Use the principle of virtual work to determine the support reactions in the beam ABCD shown in
Fig. P.4.1.

Ans. RA = 1.25W RD = 1.75W .

Fig. P.4.1

P.4.2 Find the support reactions in the beam ABC shown in Fig. P.4.2 using the principle of virtual work.

Ans. RA = (W + 2wL)/4 Rc = (3w+ 2wL)/4.
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Fig. P.4.2

P.4.3 Determine the reactions at the built-in end of the cantilever beam ABC shown in Fig. P.4.3 using the
principle of virtual work.

Ans. RA = 3W MA = 2.5WL.

Fig. P.4.3

P.4.4 Find the bending moment at the three-quarter-span point in the beam shown in Fig. P.4.4. Use the principle
of virtual work.

Ans. 3wL2/32.

Fig. P.4.4

P.4.5 Calculate the forces in the members FG, GD, and CD of the truss shown in Fig. P.4.5 using the principle
of virtual work. All horizontal and vertical members are 1m long.

Ans. FG=+20kN GD=+28.3kN CD=−20kN.
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Fig. P.4.5

P.4.6 Use the principle of virtual work to calculate the vertical displacements at the quarter- and mid-span points
in the beam shown in Fig. P.4.6.

Ans. 57wL4/6144EI 5wL4/384EI (both downward).

Fig. P.4.6
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CHAPTER

5Energy Methods

In Chapter 2, we saw that the elasticity method of structural analysis embodies the determination of
stresses and/or displacements by using equations of equilibrium and compatibility in conjunction with
the relevant force–displacement or stress–strain relationships. In addition, in Chapter 4, we investigated
the use of virtual work in calculating forces, reactions, and displacements in structural systems. A
powerful alternative but equally fundamental approach is the use of energy methods. These, while
providing exact solutions for many structural problems, find their greatest use in the rapid approximate
solution of problems for which exact solutions do not exist. Also, many structures which are statically
indeterminate—in other words, they cannot be analyzed by the application of the equations of statical
equilibrium alone—may be conveniently analyzed using an energy approach. Further, energy methods
provide comparatively simple solutions for deflection problems which are not readily solved by more
elementary means.
Generally, as we shall see, modern analysis [Ref. 1] uses the methods of total complementary energy

and total potential energy (TPE). Either method may be used to solve a particular problem, although as
a general rule deflections are more easily found using complementary energy and forces by potential
energy.
Although energy methods are applicable to a wide range of structural problems and may even

be used as indirect methods of forming equations of equilibrium or compatibility [Refs. 1, 2], we
shall be concerned in this chapter with the solution of deflection problems and the analysis of statically
indeterminate structures.We shall also include somemethods restricted to the solution of linear systems:
the unit load method, the principle of superposition, and the reciprocal theorem.

5.1 STRAIN ENERGY AND COMPLEMENTARY ENERGY
Figure 5.1(a) shows a structural member subjected to a steadily increasing load P. As the member
extends, the load P does work, and from the law of conservation of energy, this work is stored in the
member as strain energy. A typical load–deflection curve for a member possessing nonlinear elastic
characteristics is shown in Fig. 5.1(b). The strain energy U produced by a load P and corresponding
extension y is then

U =
y∫
0

Pdy (5.1)

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00005-1 111
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Fig. 5.1

(a) Strain energy of a member subjected to simple tension; (b) load–deflection curve for a nonlinearly elastic
member.

and is clearly represented by the area OBD under the load–deflection curve. Engesser (1889) called the
area OBA above the curve the complementary energy C, and from Fig. 5.1(b),

C =
P∫
0

ydP (5.2)

Complementary energy, as opposed to strain energy, has no physical meaning, being purely a convenient
mathematical quantity. However, it is possible to show that complementary energy obeys the law of
conservation of energy in the type of situation usually arising in engineering structures so that its use
as an energy method is valid.
Differentiation of Eqs. (5.1) and (5.2) with respect to y and P, respectively, gives

dU

dy
= P dC

dP
= y

Bearing these relationships in mind, we can now consider the interchangeability of strain and
complementary energy. Suppose that the curve of Fig. 5.1(b) is represented by the function

P = byn
where the coefficient b and exponent n are constants. Then,

U =
y∫
0

Pdy= 1

n

P∫
0

(
P

b

)1/n
dP

C =
P∫
0

ydP = n
y∫
0

byn dy
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Fig. 5.2

Load–deflection curve for a linearly elastic member.

Hence,

dU

dy
= P dU

dP
= 1

n

(
P

b

)1/n
= 1

n
y (5.3)

dC

dP
= y dC

dy
= bnyn = nP (5.4)

When n=1,
dU

dy
= dC

dy
= P

dU

dP
= dC

dP
= y

⎫⎪⎪⎬
⎪⎪⎭ (5.5)

and the strain and complementary energies are completely interchangeable. Such a condition is found in
a linearly elastic member; its related load–deflection curve is shown in Fig. 5.2. Clearly, area OBD(U)
is equal to area OBA(C).
It will be observed that the latter of Eqs. (5.5) is in the form of what is commonly known as

Castigliano’s first theorem, in which the differential of the strain energy U of a structure with respect to
a load is equated to the deflection of the load. To bemathematically correct, however, it is the differential
of the complementary energy C which should be equated to deflection (compare Eqs. (5.3) and (5.4)).

5.2 THE PRINCIPLE OF THE STATIONARY VALUE OF THE TOTAL
COMPLEMENTARY ENERGY

Consider an elastic system in equilibrium supporting forces P1, P2, . . . ,Pn which produce real corre-
sponding displacements �1, �2, . . . ,�n. If we impose virtual forces δP1, δP2, . . . ,δPn on the system
acting through the real displacements, then the total virtual work done by the system (see Chapter 4) is

−
∫
vol

ydP+
n∑
r=1

�rδPr



114 CHAPTER 5 Energy Methods

The first term in the preceding expression is the negative virtual work done by the particles in the elastic
body, while the second term represents the virtual work of the externally applied virtual forces. From
the principle of virtual work,

−
∫
vol

ydP+
n∑
r=1

�rδPr = 0 (5.6)

Comparing Eq. (5.6) with Eq. (5.2), we see that each term represents an increment in complementary
energy—the first, of the internal forces, and the second, of the external loads. Equation (5.6) may
therefore be rewritten as

δ(Ci+Ce) = 0 (5.7)

where

Ci =
∫
vol

P∫
0

ydP and Ce = −
n∑
r=1

�rPr (5.8)

We shall now call the quantity (Ci+Ce) the total complementary energy C of the system.
The displacements specified in Eq. (5.6) are real displacements of a continuous elastic body; they

therefore obey the condition of compatibility of displacement so that Eqs. (5.6) and (5.7) are equations
of geometrical compatibility. The principle of the stationary value of the total complementary energy
may then be stated as follows:

For an elastic body in equilibrium under the action of applied forces the true internal forces (or
stresses) and reactions are those for which the total complementary energy has a stationary value.

In otherwords, the true internal forces (or stresses) and reactions are thosewhich satisfy the condition
of compatibility of displacement. This property of the total complementary energy of an elastic system
is particularly useful in the solution of statically indeterminate structures, in which an infinite number
of stress distributions and reactive forces may be found to satisfy the requirements of equilibrium.

5.3 APPLICATION TO DEFLECTION PROBLEMS
Generally, deflection problems aremost readily solved by the complementary energy approach, although
for linearly elastic systems there is no difference between the methods of complementary and potential
energy, since, as we have seen, complementary and strain energy then become completely interchange-
able. We shall illustrate the method by reference to the deflections of frames and beams which may or
may not possess linear elasticity.
Let us suppose that we want to find the deflection �2 of the load P2 in the simple pin-jointed

framework consisting, say, of k members and supporting loads P1, P2, . . . ,Pn, as shown in Fig. 5.3.
From Eqs. (5.8), the total complementary energy of the framework is given by

C =
k∑
i=1

Fi∫
0

λi dFi−
n∑
r=1

�rPr (5.9)
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Fig. 5.3

Determination of the deflection of a point on a framework by the method of complementary energy.

where λi is the extension of the ithmember,Fi is the force in the ithmember, and�r is the corresponding
displacement of the rth load Pr . From the principle of the stationary value of the total complementary
energy,

∂C

∂P2
=

k∑
i=1

λi
∂Fi
∂P2

− �2 = 0 (5.10)

from which

�2 =
k∑
i=1

λi
∂Fi
∂P2

(5.11)

Equation (5.10) is seen to be identical to the principle of virtual forces in which virtual forces δF and
δP act through real displacements λ and �. Clearly, the partial derivatives with respect to P2 of the
constant loads P1, P2, . . . ,Pn vanish, leaving the required deflection �2 as the unknown. At this stage,
before�2 can be evaluated, the load–displacement characteristics of the members must be known. For
linear elasticity,

λi = FiLi
AiEi

where Li, Ai, and Ei are the length, the cross-sectional area, and the modulus of elasticity of the
ith member, respectively. On the other hand, if the load–displacement relationship is of a nonlinear
form, say,

Fi = b(λi)c

in which b and c are known, then Eq. (5.11) becomes

�2 =
k∑
i=1

(
Fi
b

)1/c
∂Fi
∂P2

The computation of �2 is best accomplished in tabular form, but before the procedure is illustrated by
an example, some aspects of the solution merit discussion.
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We note that the support reactions do not appear in Eq. (5.9). This convenient absence derives
from the fact that the displacements �1, �2, . . . ,�n are the real displacements of the frame and fulfill
the conditions of geometrical compatibility and boundary restraint. The complementary energy of
the reaction at A and the vertical reaction at B is therefore zero, since both of their corresponding
displacements are zero. If we examine Eq. (5.11), we note that λi is the extension of the ith member of
the framework due to the applied loads P1,P2, . . . ,Pn. Therefore, the loads Fi in the substitution for λi in
Eq. (5.11) are those corresponding to the loads P1, P2, . . . ,Pn. The term ∂Fi/∂P2 in Eq. (5.11) represents
the rate of change of Fi with P2 and is calculated by applying the load P2 to the unloaded frame and
determining the corresponding member loads in terms of P2. This procedure indicates a method for
obtaining the displacement of either a point on the frame in a direction not coincident with the line of
action of a load or, in fact, a point such as C which carries no load at all. We place at the point and in
the required direction a fictitious or dummy load, say Pf , the original loads being removed. The loads
in the members due to Pf are then calculated and ∂F/∂Pf obtained for each member. Substitution in
Eq. (5.11) produces the required deflection.
It must be pointed out that it is not absolutely necessary to remove the actual loads during the

application of Pf . The force in each member would then be calculated in terms of the actual loading
and Pf . Fi follows by substituting Pf=0, and ∂Fi/∂Pf is found by differentiation with respect to Pf .
Obviously the two approaches yield the same expressions for Fi and ∂Fi/∂Pf , although the latter is
arithmetically clumsier.

Example 5.1
Calculate the vertical deflection of the point B and the horizontal movement of D in the pin-jointed
framework shown in Fig. 5.4(a). All members of the framework are linearly elastic and have cross-
sectional areas of 1800mm2. E for the material of the members is 200000N/mm2.

The members of the framework are linearly elastic so that Eq. (5.11) may be written as

� =
k∑
i=1

FiLi
AiEi

∂Fi
∂P

(i)

or since each member has the same cross-sectional area and modulus of elasticity,

� = 1

AE

k∑
i=1
FiLi

∂Fi
∂P

(ii)

The solution is completed in Table 5.1, in which F are the member forces due to the actual loading
of Fig. 5.4(a), FB,f are the member forces due to the fictitious load PB,f in Fig. 5.4(b), and FD,f are
the forces in the members produced by the fictitious load PD,f in Fig. 5.4(c). We take tensile forces as
positive and compressive forces as negative.
The vertical deflection of B is

�B,v = 1268× 106
1800× 200000 = 3.52mm
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Fig. 5.4

(a) Actual loading of framework; (b) determination of vertical deflection of B; (c) determination of horizontal
deflection of D.

Table 5.1

① ② ③ ④ ⑤ ⑥ ⑦ ⑧×106 ⑨×106
Member L(mm) F(N) FB,f (N) ∂FB,f/∂PB,f FD,f (N) ∂FD,f/∂PD,f FL∂FB,f/∂PB,f FL∂FD,f/∂PD,f

AE 4000
√
2 − 60000√2 − 2√2PB,f/3 − 2√2/3 0 0 320

√
2 0

EF 4000 − 60000 − 2PB,f/3 − 2/3 0 0 160 0

FD 4000
√
2 − 80000√2 − √

2PB,f/3 − √
2/3 0 0 640

√
2/3 0

DC 4000 80000 PB,f/3 1/3 PD,f 1 320/3 320

CB 4000 80000 PB,f/3 1/3 PD,f 1 320/3 320

BA 4000 60000 2PB,f/3 2/3 PD,f 1 480/3 240

EB 4000 20000 2PB,f/3 2/3 0 0 160/3 0

FB 4000
√
2 − 20000√2 √

2PB,f/3
√
2/3 0 0 − 160√2/3 0

FC 4000 100000 0 0 0 0 0 0∑=1268 ∑=880
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and the horizontal movement of D is

�D,h = 880× 106
1800× 200000 = 2.44mm

which agree with the virtual work solution (Example 4.6). The positive values of�B,v and�D,h indicate
that the deflections are in the directions of PB,f and PD,f .
The analysis of beam deflection problems by complementary energy is similar to that of pin-jointed

frameworks, except that we assume initially that displacements are caused primarily by bending action.
Shear force effects are discussed later in the chapter. Figure 5.5 shows a tip-loaded cantilever of uniform
cross section and length L. The tip load P produces a vertical deflection �v which we want to find.
The total complementary energy C of the system is given by

C =
∫
L

M∫
0

dθ dM −P�v (5.12)

in which
∫M
0 dθ dM is the complementary energy of an element δz of the beam. This element subtends

an angle δθ at its center of curvature due to the application of the bendingmomentM. From the principle
of the stationary value of the total complementary energy,

∂C

∂P
=
∫
L

dθ
dM

dP
− �v = 0

or

�v =
∫
L

dθ
dM

dP
(5.13)

Equation (5.13) is applicable to either a nonlinear or a linear elastic beam. To proceed further, therefore,
we require the load–displacement (M–θ ) and bending moment–load (M–P) relationships. It is imma-
terial for the purposes of this illustrative problem whether the system is linear or nonlinear since the

Fig. 5.5

Beam deflection by the method of complementary energy.
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mechanics of the solution are the same in either case. We choose therefore a linear M–θ relationship as
this is the case in the majority of the problems we consider. Hence, from Fig. 5.5,

δθ = Kδz

or

dθ = M

EI
dz

(
1

K
= EI

M
from simple beam theory

)
where the product modulus of elasticity×second moment of area of the beam cross section is known
as the bending or flexural rigidity of the beam. Also,

M = Pz
so that

dM

dP
= z

Substitution for dθ ,M, and dM/dP in Eq. (5.13) gives

�v =
L∫
0

Pz2

EI
dz

or

�v = PL3

3EI
The fictitious load method of the framework example may be used in the solution of beam deflection

problems where we require deflections at positions on the beam other than concentrated load points.
Suppose that we are to find the tip deflection �T of the cantilever of the previous example in which
the concentrated load has been replaced by a uniformly distributed load of intensity w per unit length
(see Fig. 5.6). First, we apply a fictitious load Pf at the point where the deflection is required. The total
complementary energy of the system is

C =
∫
L

M∫
0

dθ dM − �TPf −
L∫
0

�wdz

Fig. 5.6

Deflection of a uniformly loaded cantilever by the method of complementary energy.
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where the symbols take their previous meanings and � is the vertical deflection of any point on the
beam. Then,

∂C

∂Pf
=

L∫
0

dθ
∂M

∂Pf
− �T = 0 (5.14)

As before

dθ = M

EI
dz

but

M = Pfz+ wz2

2
(Pf = 0)

Hence,

∂M

∂Pf
= z

Substituting in Eq. (5.14) for dθ ,M and ∂M/∂Pf , and remembering that Pf=0, we have

�T =
L∫
0

wz3

2EI
dz

giving

�T = wL4

8EI
It will be noted that here, unlike the method for the solution of the pin-jointed framework, the

fictitious load is applied to the loaded beam. There is, however, no arithmetical advantage to be gained
by the former approach although the result would obviously be the same, since M would equal wz2/2
and ∂M/∂Pf would have the value z.

Example 5.2
Calculate the vertical displacements of the quarter and the midspan points B and C of the simply
supported beam of length L and the flexural rigidity EI loaded, as shown in Fig. 5.7.

The total complementary energy C of the system including the fictitious loads PB,f and PC,f is

C =
∫
L

M∫
0

dθ dM −PB,f�B−PC,f�C−
L∫
0

�wdz (i)

Hence,

∂C

∂PB,f
=
∫
L

dθ
∂M

∂PB,f
− �B = 0 (ii)
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Fig. 5.7

Deflection of a simply supported beam by the method of complementary energy.

and

∂C

∂PC,f
=
∫
L

dθ
∂M

∂PC,f
− �C = 0 (iii)

Assuming a linearly elastic beam, Eqs. (ii) and (iii) become

�B = 1

EI

L∫
0

M
∂M

∂PB,f
dz (iv)

�C = 1

EI

L∫
0

M
∂M

∂PC,f
dz (v)

From A to B,

M =
(
3

4
PB,f + 1

2
PC,f + wL

2

)
z− wz2

2

so that

∂M

∂PB,f
= 3

4
z,

∂M

∂PC,f
= 1

2
z

From B to C,

M =
(
3

4
PB,f + 1

2
PC,f + wL

2

)
z− wz2

2
−PB,f

(
z− L

4

)
giving

∂M

∂PB,f
= 1

4
(L− z), ∂M

∂PC,f
= 1

2
z
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From C to D,

M =
(
1

4
PB,f + 1

2
PC,f + wL

2

)
(L− z) − w

2
(L− z)2

so that

∂M

∂PB,f
= 1

4
(L− z) ∂M

∂PC,f
= 1

2
(L− z)

Substituting these values in Eqs. (iv) and (v) and remembering that PB,f=PC,f=0, we have, from
Eq. (iv),

�B = 1

EI

⎧⎪⎨
⎪⎩
L/4∫
0

(
wLz

2
− wz2

2

)
3

4
zdz+

L/2∫
L/4

(
wLz

2
− wz2

2

)
1

4
(L− z)dz

+
L∫

L/2

(
wLz

2
− wz2

2

)
1

4
(L− z)dz

⎫⎪⎬
⎪⎭

from which

�B = 119wL4

24576EI
Similarly,

�C = 5wL4

384EI
The fictitious loadmethod of determining deflectionsmay be streamlined for linearly elastic systems

and is then termed the unit load method; this we shall discuss later in the chapter.

5.4 APPLICATION TO THE SOLUTION OF STATICALLY
INDETERMINATE SYSTEMS

In a statically determinate structure, the internal forces are determined uniquely by simple statical
equilibrium considerations. This is not the case for a statically indeterminate system in which, as we
have already noted, an infinite number of internal force or stress distributions may be found to satisfy
the conditions of equilibrium. The true force system is, as we demonstrated in Section 5.2, the one
satisfying the conditions of compatibility of displacement of the elastic structure or, alternatively, that
for which the total complementary energy has a stationary value.We shall apply the principle to a variety
of statically indeterminate structures, beginning with the relatively simple singly redundant pin-jointed
frame shown in Fig. 5.8 in which each member has the same value of the product AE.
The first step is to choose the redundant member. In this example, no advantage is gained by the

choice of any particular member, although in some cases careful selection can result in a decrease in
the amount of arithmetical labor. Taking BD as the redundant member, we assume that it sustains a
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Fig. 5.8

Analysis of a statically indeterminate framework by the method of complementary energy.

tensile force R due to the external loading. The total complementary energy of the framework is, with
the notation of Eq. (5.9),

C =
k∑
i=1

Fi∫
0

λi dFi−P�

Hence,

∂C

∂R
=

k∑
i=1

λi
∂Fi
∂R

= 0 (5.15)

or, assuming linear elasticity,

1

AE

k∑
i=1
FiLi

∂Fi
∂R

= 0 (5.16)

The solution is now completed in Table 5.2, where, as in Table 5.1, positive signs indicate tension.
Hence, from Eq. (5.16),

4.83RL+ 2.707PL = 0
or

R= −0.56P
Substitution for R in column ③ of Table 5.2 gives the force in each member. Having determined the
forces in the members, then the deflection of any point on the framework may be found by the method
described in Section 5.3.
Unlike the statically determinate type, statically indeterminate frameworks may be subjected to self-

straining. Thus, internal forces are present before external loads are applied. Such a situation may be
caused by a local temperature change or by an initial lack of fit of a member. Suppose that the member
BD of the framework of Fig. 5.8 is short by a known amount �R when the framework is assembled but
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Table 5.2

① ② ③ ④ ⑤

Member Length F ∂F/∂R FL∂F/∂R

AB L −R/
√
2 −1/√2 RL/2

BC L −R/
√
2 −1/√2 RL/2

CD L −(P+R/
√
2) −1/√2 L(P+R/

√
2)/

√
2

DA L −R/
√
2 −1/√2 RL/2

AC
√
2L

√
2P+R 1 L(2P+√

2R)

BD
√
2L R 1

√
2RL

�=4.83RL+2.707PL

is forced to fit. The load R in BD will then have suffered a displacement �R in addition to that caused
by the change in length of BD produced by the load P. The total complementary energy is then

C =
k∑
i=1

Fi∫
0

λi dFi−P� −R�R

and

∂C

∂R
=

k∑
i=1

λi
∂Fi
∂R

− �R = 0

or

�R = 1

AE

k∑
i=1
FiLi

∂Fi
∂R

(5.17)

Obviously, the summation term in Eq. (5.17) has the same value as in the previous case so that

R= −0.56P+ AE

4.83L
�R

Hence, the forces in the members are due to both applied loads and initial lack of fit.
Some care should be given to the sign of the lack of fit �R. We note here that the member BD is

short by an amount �R so that the assumption of a positive sign for �R is compatible with the tensile
force R. If BD were initially too long, then the total complementary energy of the system would be
written as

C =
k∑
i=1

Fi∫
0

λi dFi−P� −R(−�R)

giving

−�R = 1

AE

k∑
i=1
FiLi

∂Fi
∂R
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Example 5.3
Calculate the loads in the members of the singly redundant pin-jointed framework shown in Fig. 5.9.
The members AC and BD are 30mm2 in cross section, and all other members are 20mm2 in cross
section. The members AD, BC, and DC are each 800mm long. E=200000N/mm2.

From the geometry of the framework ̂ABD=̂CBD=30◦; therefore, BD=AC=800√3mm.
Choosing CD as the redundant member and proceeding from Eq. (5.16), we have

1

E

k∑
i=1

FiLi
Ai

∂Fi
∂R

= 0 (i)

From Table 5.3, we have

k∑
i=1

FiLi
Ai

∂Fi
∂R

= −268+ 129.2R= 0

Hence, R=2.1N and the forces in the members are tabulated in column ⑦ of Table 5.3.

Fig. 5.9

Framework of Example 5.3.

Table 5.3 Tension positive

① ② ③ ④ ⑤ ⑥ ⑦

Member L(mm) A(mm2) F(N) ∂F/∂R (FL/A)∂F/∂R Force (N)

AC 800
√
3 30 50−√

3R/2 −√
3/2 −2000+20√3R 48.2

CB 800 20 86.6+R/2 1/2 1732+10R 87.6
BD 800

√
3 30 −√

3R/2 −√
3/2 20

√
3R −1.8

CD 800 20 R 1 40R 2.1
AD 800 20 R/2 1/2 10R 1.0

�=−268+129.2R
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Fig. 5.10

Framework of Example 5.4.

Example 5.4
A plane, pin-jointed framework consists of six bars forming a rectangle ABCD 4000mm by 3000mm
with two diagonals, as shown in Fig. 5.10. The cross-sectional area of each bar is 200mm2, and
the frame is unstressed when the temperature of each member is the same. Because of the local con-
ditions, the temperature of one of the 3000mm members is raised by 30◦C. Calculate the resulting
forces in all the members if the coefficient of linear expansion α of the bars is 7×10−6/◦C. E=
200000N/mm2.

Suppose that BC is the heated member; then the increase in length of BC=3000×30×
7×10−6=0.63mm. Therefore, from Eq. (5.17),

−0.63= 1

200× 200000
k∑
i=1
FiLi

∂Fi
∂R

(i)

Substitution from the summation of column ⑤ in Table 5.4 into Eq. (i) gives

R= −0.63× 200× 200000
48000

= −525N

Column ⑥ of Table 5.4 is now completed for the force in each member.
So far, our analysis has been limited to singly redundant frameworks, although the same procedure

may be adopted to solve a multi-redundant framework of, say, m redundancies. Therefore, instead of a
single equation of the type (5.15), we would have m simultaneous equations

∂C

∂Rj
=

k∑
i=1

λi
∂Fi
∂Rj

= 0 ( j = 1,2, . . . ,m)

from which the m unknowns R1,R2, . . . ,Rm would be obtained. The forces F in the members follow,
being expressed initially in terms of the applied loads and R1,R2, . . . ,Rm.
Other types of statically indeterminate structure are solved by the application of total complementary

energy with equal facility. The propped cantilever of Fig. 5.11 is an example of a singly redundant beam
structure for which total complementary energy readily yields a solution.
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Table 5.4 Tension positive

① ② ③ ④ ⑤ ⑥

Member L(mm) F(N) ∂F/∂R FL∂F/∂R Force (N)

AB 4000 4R/3 4/3 64000R/9 −700
BC 3000 R 1 3000R −525
CD 4000 4R/3 4/3 64000R/9 −700
DA 3000 R 1 3000R −525
AC 5000 −5R/3 −5/3 125000R/9 875
DB 5000 −5R/3 −5/3 125000R/9 875

�=48000R

Fig. 5.11

Analysis of a propped cantilever by the method of complementary energy.

The total complementary energy of the system is, with the notation of Eq. (5.12),

C =
∫
L

M∫
0

dθ dM −P�C−RB�B

where �C and �B are the deflections at C and B, respectively. Usually, in problems of this type, �B is
either a zero for a rigid support or a known amount (sometimes in terms of RB) for a sinking support.
Hence, for a stationary value of C,

∂C

∂RB
=
∫
L

dθ
∂M

∂RB
− �B = 0

fromwhich equationRB may be found;RB being contained in the expression for the bendingmomentM.
Obviously, the same procedure is applicable to a beam having a multiredundant support system—for

example, a continuous beam supporting a series of loads P1,P2, . . . ,Pn. The total complementary energy
of such a beam would be given by

C =
∫
L

M∫
0

dθ dM −
m∑
j=1
Rj�j −

n∑
r=1
Pr�r
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where Rj and �j are the reaction and known deflection (at least in terms of Rj) of the jth support point
in a total of m supports. The stationary value of C gives

∂C

∂Rj
=
∫
L

dθ
∂M

∂Rj
− �j = 0 ( j = 1,2, . . . ,m)

producing m simultaneous equations for the m unknown reactions.
The intention here is not to suggest that continuous beams are best or most readily solved by the

energy method; the moment distribution method produces a more rapid solution, especially for beams
in which the degree of redundancy is large. Instead, the purpose is to demonstrate the versatility and
power of energy methods in their ready solution of a wide range of structural problems. A complete
investigation of this versatility is impossible here due to restriction of space; in fact, whole books have
been devoted to this topic. We therefore limit our analysis to problems peculiar to the field of aircraft
structures with which we are primarily concerned. The remaining portion of this section is therefore
concerned with the solution of frames and rings possessing varying degrees of redundancy.
The frameworks we considered in the earlier part of this section and in Section 5.3 comprised

members capable of resisting direct forces only. Of a more general type are composite frameworks
in which some or all of the members resist bending and shear loads in addition to direct loads. It
is usual, however, except for the thin-walled structures in Part B of this book, to ignore deflections
produced by shear forces. We only consider, therefore, bending and direct force contributions to the
internal complementary energy of such structures. The method of analysis is illustrated in the following
example.

Example 5.5
The simply supported beam ABC shown in Fig. 5.12 is stiffened by an arrangement of pin-jointed bars
capable of sustaining axial loads only. If the cross-sectional area of the beam is AB and that of the bars
is A, calculate the forces in the members of the framework assuming that displacements are caused by
bending and direct force action only.

Fig. 5.12

Analysis of a trussed beam by the method of complementary energy.
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We observe that if the beam were only capable of supporting direct loads, then the structure would
be a relatively simple statically determinate pin-jointed framework. Since the beam resists bending
moments (we are ignoring shear effects), the system is statically indeterminate with a single redundancy,
the bending moment at any section of the beam. The total complementary energy of the framework is
given, with the notation previously developed, by

C =
∫
ABC

M∫
0

dθ dM +
k∑
i=1

Fi∫
0

λj dFi−P� (i)

If we suppose that the tensile load in the member ED is R, then, for C to have a stationary value,

∂C

∂R
=
∫
ABC

dθ
∂M

∂R
+

k∑
i=1

λi
∂Fi
∂R

= 0 (ii)

At this point, we assume the appropriate load–displacement relationships; againwe shall take the system
to be linear so that Eq. (ii) becomes

L∫
0

M

EI

∂M

∂R
dz+

k∑
i=1

FiLi
AiE

∂Fi
∂R

= 0 (iii)

The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the beam ABC
contributes to the first term, while the complete structure contributes to the second. Evaluating the
summation term by a tabular process, we have Table 5.5. Summation of column ⑥ in Table 5.5 gives

k∑
i=1

FiLi
AiE

∂Fi
∂R

= RL

4E

(
1

AB
+ 10

A

)
(iv)

The bending moment at any section of the beam between A and F is

M = 3

4
Pz−

√
3

2
Rz hence

∂M

∂R
= −

√
3

2
z

Table 5.5 Tension positive

① ② ③ ④ ⑤ ⑥

Member Length Area F ∂F/∂R (F/A)∂F/∂R

AB L/2 AB −R/2 −1/2 R/4AB
BC L/2 AB −R/2 −1/2 R/4AB
CD L/2 A R 1 R/A
DE L/2 A R 1 R/A
BD L/2 A −R −1 R/A
EB L/2 A −R −1 R/A
AE L/2 A R 1 R/A
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between F and B it is

M = P

4
(L− z) −

√
3

2
Rz hence

∂M

∂R
= −

√
3

2
z

and between B and C the bending moment is

M = P

4
(L− z) −

√
3

2
R(L− z) hence

∂M

∂R
= −

√
3

2
(L− z)

Thus,

L∫
0

M

EI

∂M

∂R
dz = 1

EI

⎧⎪⎨
⎪⎩
L/4∫
0

−
(
3

4
Pz−

√
3

2
Rz

)√
3

2
zdz+

L/2∫
L/4

[
P

4
(L− z) −

√
3

2
Rz

](
−

√
3

2
z

)
dz

+
L∫

L/2

−
[
P

4
(L− z) −

√
3

2
R(L− z)

]√
3

2
(L− z)dz

⎫⎪⎬
⎪⎭

giving

L∫
0

M

EI

∂M

∂R
dz = −11√3PL3

768EI
+ RL3

16EI
(v)

Substituting from Eqs. (iv) and (v) into Eq. (iii)

−11
√
3PL3

768EI
+ RL3

16EI
+ RL

4E

(
A+ 10AB
ABA

)
= 0

from which

R= 11
√
3PL2ABA

48[L2ABA+ 4I(A+ 10AB)]
hence the forces in each member of the framework. The deflection � of the load P or any point on the
framework may be obtained by the method of Section 5.3. For example, the stationary value of the total
complementary energy of Eq. (i) gives �, that is,

∂C

∂P
=
∫
ABC

dθ
∂M

∂R
+

k∑
i=1

λi
∂Fi
∂P

− � = 0

Although braced beams are still found in modern light aircraft in the form of braced wing structures,
a much more common structural component is the ring frame. The role of this particular component is
discussed in detail in Chapter 11; it is therefore sufficient for the moment to say that ring frames form
the basic shape of semimonocoque fuselages reacting shear loads from the fuselage skins, point loads
from wing spar attachments, and distributed loads from floor beams. Usually a ring is two-dimensional,
supporting loads applied in its own plane. Our analysis is limited to the two-dimensional case.



5.4 Application to the Solution of Statically Indeterminate Systems 131

A two-dimensional ring has redundancies of direct load, bending moment, and shear at any section,
as shown in Fig. 5.13. However, in some special cases of loading, the number of redundancies may
be reduced. For example, on a plane of symmetry, the shear loads and sometimes the normal or direct
loads are zero, while on a plane of antisymmetry, the direct loads and bending moments are zero. Let us
consider the simple case of a doubly symmetrical ring shown in Fig. 5.14(a). At a section in the vertical
plane of symmetry, the internal shear and direct loads vanish, leaving one redundancy, the bending
moment MA (Fig. 5.14(b)). Note that in the horizontal plane of symmetry, the internal shears are zero,

Fig. 5.13

Internal force system in a two-dimensional ring.

Fig. 5.14

Doubly symmetric ring.



132 CHAPTER 5 Energy Methods

but the direct loads have a value P/2. The total complementary energy of the system is (again ignoring
shear strains)

C =
∫
ring

M∫
0

dθ dM − 2
(
P

2
�

)

taking the bending moment as positive when it increases the curvature of the ring. In the preceding
expression for C,� is the displacement of the top, A, of the ring relative to the bottom, B. Assigning a
stationary value to C, we have

∂C

∂MA
=
∫
ring

dθ
∂M

∂MA
= 0

or assuming linear elasticity and considering, from symmetry, half the ring

πR∫
0

M

EI

∂M

∂MA
ds= 0

Thus, since

M =MA− P

2
R sinθ

∂M

∂MA
= 1

and we have
π∫
0

(
MA− P

2
R sinθ

)
Rdθ = 0

or [
MAθ + P

2
Rcosθ

]π

0
= 0

from which

MA = PR

π

The bending moment distribution is then

M = PR
(
1

π
− sinθ

2

)
and is shown diagrammatically in Fig. 5.15.
Let us now consider a more representative aircraft structural problem. The circular fuselage frame

of Fig. 5.16(a) supports a load P which is reacted by a shear flow q (i.e., a shear force per unit length:
see Chapter 15), distributed around the circumference of the frame from the fuselage skin. The value
and direction of this shear flow are quoted here but are derived from theory established in Section 15.3.
From our previous remarks on the effect of symmetry, we observe that there is no shear force at the
section A on the vertical plane of symmetry. The unknowns are therefore the bending moment MA and
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Fig. 5.15

Distribution of bending moment in a doubly symmetric ring.

normal force NA. We proceed, as in the previous example, by writing down the total complementary
energy C of the system. Then, neglecting shear strains

C =
∫
ring

M∫
0

dθ dM −P� (i)

in which� is the deflection of the point of application of P relative to the top of the frame. Note thatMA
and NA do not contribute to the complement of the potential energy of the system, since, by symmetry,
the rotation and horizontal displacements at A are zero. From the principle of the stationary value of
the total complementary energy,

∂C

∂MA
=
∫
ring

dθ
∂M

∂MA
= 0 (ii)

and

∂C

∂NA
=
∫
ring

dθ
∂M

∂NA
= 0 (iii)

Thebendingmoment at a radial section inclined at an angle θ to the vertical diameter is, fromFig. 5.16(c),

M =MA+NAR(1− cosθ) +
θ∫
0

qBDRdα

or

M =MA+NAR(1− cosθ) +
θ∫
0

P

πR
sinα [R−Rcos(θ − α)]Rdα
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Fig. 5.16

Determination of bending moment distribution in a shear- and direct-loaded ring.

which gives

M =MA+NAR(1− cosθ) + PR

π

(
1− cosθ − 1

2
θ sinθ

)
(iv)

Hence,

∂M

∂MA
= 1 ∂M

∂NA
= R(1− cosθ) (v)



5.4 Application to the Solution of Statically Indeterminate Systems 135

Assuming that the fuselage frame is linearly elastic, we have, from Eqs. (ii) and (iii),

2

π∫
0

M

EI

∂M

∂MA
Rdθ = 2

π∫
0

M

EI

∂M

∂NA
Rdθ = 0 (vi)

Substituting from Eqs. (iv) and (v) into Eq. (vi) gives two simultaneous equations

−PR
2π

=MA+NAR (vii)

−7PR
8π

=MA+ 3

2
NAR (viii)

These equations may be written in matrix form as follows:

PR

π

{−1/2
−7/8

}
=
[
1 R
1 3R/2

]{
MA
NA

}
(ix)

so that {
MA
NA

}
= PR

π

[
1 R
1 3R/2

]−1{−1/2
−7/8

}
or {

MA
NA

}
= PR

π

[
3 −2

−2/R 2/R

]{−1/2
−7/8

}
which gives

MA = PR

4π
NA = −3P

4π
The bending moment distribution follows from Eq. (iv) and is

M = PR

2π

(
1− 1

2
cosθ − θ sinθ

)
(x)

The solution of Eq. (ix) involves the inversion of the matrix[
1 R
1 3R/2

]
which may be carried out using any of the standard methods detailed in texts on matrix analysis. In
this example, Eqs. (vii) and (viii) are clearly most easily solved directly; however, the matrix approach
illustrates the technique and serves as a useful introduction to the more detailed discussion in Chapter 6.

Example 5.6
A two-cell fuselage has circular frames with a rigidly attached straight member across the middle. The
bending stiffness of the lower half of the frame is 2EI, while that of the upper half and also the straight
member is EI.
Calculate the distribution of the bending moment in each part of the frame for the loading system

shown in Fig. 5.17(a). Illustrate your answer bymeans of a sketch and show clearly the bendingmoment
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Fig. 5.17

Determination of bending moment distribution in an antisymmetrical fuselage frame.

carried by each part of the frame at the junction with the straight member. Deformations only due to
bending strains need be taken into account.

The loading is antisymmetrical so that there are no bending moments or normal forces on the plane
of antisymmetry; there remain three shear loads: SA, SD, and SC, as shown in Fig. 5.17(b). The total
complementary energy of the half-frame is then (neglecting shear strains)

C =
∫

half-frame

M∫
0

dθ dM −M0αB− M0
r

�B (i)

where αB and�B are the rotation and deflection of the frame at B caused by the applied momentM0 and
concentrated load M0/r, respectively. From antisymmetry, there is no deflection at A, D, or C so that
SA, SD, and SC make no contribution to the total complementary energy. In addition, overall equilibrium
of the half-frame gives

SA+ SD+ SC = M0
r

(ii)

Assigning stationary values to the total complementary energy and considering the half-frame only,
we have

∂C

∂SA
=

∫
half-frame

dθ
∂M

∂SA
= 0

and

∂C

∂SD
=

∫
half-frame

dθ
∂M

∂SD
= 0
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or assuming linear elasticity ∫
half-frame

M

EI

∂M

∂SA
ds=

∫
half-frame

M

EI

∂M

∂SD
ds= 0 (iii)

In AB,

M = −SAr sinθ and
∂M

∂SA
= −r sinθ ,

∂M

∂SD
= 0

In DB,

M = SDx and
∂M

∂SA
= 0, ∂M

∂SD
= x

In CB,

M = SCr sinφ =
(
M0
r

− SA− SD
)
r sinφ

Thus,

∂M

∂SA
= −r sinφ and

∂M

∂SD
= −r sinφ

Substituting these expressions in Eq. (iii) and integrating, we have

3.365SA+ SC =M0/r (iv)

SA+ 2.178SC =M0/r (v)

which, with Eq. (ii), enable SA, SD, and SC to be found. In matrix form, these equations are written as⎧⎨
⎩
M0/r
M0/r
M0/r

⎫⎬
⎭=

⎡
⎣1 1 1
3.356 0 1
1 0 2.178

⎤
⎦
⎧⎨
⎩
SA
SD
SC

⎫⎬
⎭ (vi)

from which we obtain ⎧⎨
⎩
SA
SD
SC

⎫⎬
⎭=

⎡
⎣0 0.345 −0.159
1 −0.187 −0.373
0 −0.159 0.532

⎤
⎦
⎧⎨
⎩
M0/r
M0/r
M0/r

⎫⎬
⎭ (vii)

which give

SA = 0.187M0/r SD = 0.44M0/r SC = 0.373M0/r
Again the square matrix of Eq. (vi) has been inverted to produce Eq. (vii). The bending moment
distribution with directions of bending moment is shown in Fig. 5.18.
So far in this chapter, we have considered the application of the principle of the stationary value of

the total complementary energy of elastic systems in the analysis of various types of structure. Although
the majority of the examples used to illustrate the method are of linearly elastic systems, it was pointed
out that generally they may be used with equal facility for the solution of nonlinear systems.
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Fig. 5.18

Distribution of bending moment in frame of Example 5.6.

In fact, the question of whether a structure possesses linear or nonlinear characteristics arises only
after the initial step of writing down expressions for the total potential or complementary energies.
However, a great number of structures are linearly elastic and possess unique properties which enable
solutions, in some cases, to be more easily obtained. The remainder of this chapter is devoted to these
methods.

5.5 UNIT LOAD METHOD
In Section 5.3, we discussed the dummy or fictitious load method of obtaining deflections of structures.
For a linearly elastic structure, the method may be streamlined as follows. Consider the framework of
Fig. 5.3 in which we require, say, to find the vertical deflection of the point C. Following the procedure
of Section 5.3, we would place a vertical dummy load Pf at C and write down the total complementary
energy of the framework, that is,

C =
k∑
i=1

Fi∫
0

λi dFi−
n∑
r=1

�rPr (see Eq. (5.9))

For a stationary value of C,

∂C

∂Pf
=

k∑
i=1

λi
∂Fi
∂Pf

− �C = 0 (5.18)
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from which

�C =
k∑
i=1

λi
∂Fi
∂Pf

as before (5.19)

If instead of the arbitrary dummy load Pf we had placed a unit load at C, then the load in the ith linearly
elastic member would be

Fi = ∂Fi
∂Pf

1

Therefore, the term ∂Fi/∂Pf in Eq. (5.19) is equal to the load in the ith member due to a unit load at C,
and Eq. (5.19) may be written as

�C =
k∑
i=1

Fi,0Fi,1Li
AiEi

(5.20)

where Fi,0 is the force in the ith member due to the actual loading and Fi,1 is the force in the ith
member due to a unit load placed at the position and in the direction of the required deflection. Thus,
in Example 5.1, columns ④ and ⑥ in Table 5.1 would be eliminated, leaving column ⑤ as FB,1 and
column ⑦ as FD,1. Obviously column ③ is F0.
Similar expressions for deflection due to bending and torsion of linear structures follow from the

well-known relationships between bending and rotation and torsion and rotation. Hence, for a member
of length L and flexural and torsional rigidities EI and GJ, respectively,

�B.M =
∫
L

M0M1
EI

dz �T =
∫
L

T0T1
GJ

dz (5.21)

where M0 is the bending moment at any section produced by the actual loading and M1 is the bending
moment at any section due to a unit load applied at the position and in the direction of the required
deflection. The same applies to torsion.
Generally, shear deflections of slender beams are ignored but may be calculated when required for

particular cases. Of greater interest in aircraft structures is the calculation of the deflections produced by
the large shear stresses experienced by thin-walled sections. This problem is discussed in Chapter 19.

Example 5.7
A steel rod of uniform circular cross section is bent as shown in Fig. 5.19, AB and BC being horizontal
and CD being vertical. The arms AB, BC, and CD are of equal length. The rod is encastré at A, and
the other end D is free. A uniformly distributed load covers the length BC. Find the components of the
displacement of the free end D in terms of EI and GJ.

Since the cross-sectional area A and modulus of elasticity E are not given, we shall assume that
displacements due to axial distortion are to be ignored. We place, in turn, unit loads in the assumed
positive directions of the axes xyz.
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Fig. 5.19

Deflection of a bent rod.

First, consider the displacement in the direction parallel to the x axis. From Eqs. (5.21),

�x =
∫
L

M0M1
EI

ds+
∫
L

T0T1
GJ

ds

Using a tabular procedure,

M0 M1 T0 T1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Plane xy xz yz xy xz yz xy xz yz xy xz yz

CD 0 0 0 y 0 0 0 0 0 0 0 0

CB 0 0 −wz2/2 0 z 0 0 0 0 l 0 0

BA −wlx 0 0 l l 0 0 0 wl2/2 0 0 0

Hence,

�x =
l∫
0

−wl
2x

EI
dx

or

�x = −wl
4

2EI
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Similarly,

�y = wl4
(
11

24EI
+ 1

2GJ

)

�z = wl4
(
1

6EI
+ 1

2GJ

)

5.6 FLEXIBILITY METHOD
An alternative approach to the solution of statically indeterminate beams and frames is to release
the structure—that is, remove redundant members or supports—until the structure becomes statically
determinate. The displacement of some point in the released structure is then determined by, say, the
unit load method. The actual loads on the structure are removed and unknown forces applied to the
points where the structure has been released; the displacement at the point produced by these unknown
forces must, from compatibility, be the same as that in the released structure. The unknown forces are
then obtained; this approach is known as the flexibility method.

Example 5.8
Determine the forces in the members of the truss shown in Fig. 5.20(a); the cross-sectional area A and
Young’s modulus E are the same for all members.

The truss in Fig. 5.20(a) is clearly externally statically determinate but has a degree of internal
statical indeterminacy equal to 1. We therefore release the truss so that it becomes statically determinate
by “cutting” one of the members, say BD, as shown in Fig. 5.20(b). Because of the actual loads (P in
this case), the cut ends of the member BD will separate or come together, depending on whether the
force in the member (before it was cut) was tensile or compressive; we shall assume that it was tensile.

Fig. 5.20

Analysis of a statically indeterminate truss.
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We are assuming that the truss is linearly elastic so that the relative displacement of the cut ends of
the member BD (in effect, the movement of B and D away from or toward each other along the diagonal
BD) may be found using, say, the unit load method. Thus, we determine the forces Fa, j, in the members
produced by the actual loads. We then apply equal and opposite unit loads to the cut ends of the member
BD as shown in Fig. 5.20(c) and calculate the forces, F1, j, in the members. The displacement of B
relative to D, �BD, is then given by

�BD =
n∑
j=1

Fa, jF1, jLj
AE

(see Eq. (ii) in Example 4.6)

The forces, Fa,j, are the forces in the members of the released truss due to the actual loads and are not,
therefore, the actual forces in the members of the complete truss. We shall therefore redesignate the
forces in the members of the released truss as F0, j. The expression for �BD then becomes

�BD =
n∑
j=1

F0, jF1, jLj
AE

(i)

In the actual structure, this displacement is prevented by the force, XBD, in the redundant member BD.
If, therefore, we calculate the displacement, aBD, in the direction of BD produced by a unit value of
XBD, the displacement due to XBD will be XBDaBD. Clearly, from compatibility

�BD+XBDaBD = 0 (ii)

from which XBD is found, aBD is a flexibility coefficient. Having determined XBD, the actual forces in
the members of the complete truss may be calculated by, say, the method of joints or the method of
sections.
In Eq. (ii), aBD is the displacement of the released truss in the direction of BD produced by a unit

load. Thus, in using the unit load method to calculate this displacement, the actual member forces (F1, j)
and the member forces produced by the unit load (Fl, j) are the same. Therefore, from Eq. (i)

aBD =
n∑
j=1

F21, jLj

AE
(iii)

The solution is completed in Table 5.6. From that table,

�BD = 2.71PL

AE
aBD = 4.82L

AE

Substituting these values in Eq. (i), we have

2.71PL

AE
+XBD 4.82L

AE
= 0

from which

XBD = −0.56P (i.e., compression)
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Table 5.6

Member Lj(m) F0, j F1, j F0, jF1, jLj F21, jLj Fa, j

AB L 0 −0.71 0 0.5L +0.40P
BC L 0 −0.71 0 0.5L +0.40P
CD L −P −0.71 0.71PL 0.5L −0.60P
BD 1.41L − 1.0 − 1.41L −0.56P
AC 1.41L 1.41P 1.0 2.0PL 1.41L +0.85P
AD L 0 −0.71 0 0.5L +0.40P

�=2.71PL �=4.82L

The actual forces, Fa, j, in the members of the complete truss of Fig. 5.20(a) are now calculated using
the method of joints and are listed in the final column of Table 5.6.
We note in the preceding that �BD is positive, which means that �BD is in the direction of the unit

loads, B approaches D, and the diagonal BD in the released structure decreases in length. Therefore,
in the complete structure, the member BD, which prevents this shortening, must be in compression
as shown; also aBD will always be positive, since it contains the term F21, j. Finally, we note that the
cut member BD is included in the calculation of the displacements in the released structure, since its
deformation, under a unit load, contributes to aBD.

Example 5.9
Calculate the forces in the members of the truss shown in Fig. 5.21(a). All members have the same
cross-sectional area A and Young’s modulus E.

By inspection, we see that the truss is both internally and externally statically indeterminate, since
it would remain stable and in equilibrium if one of the diagonals, AD or BD, and the support at C
were removed; the degree of indeterminacy is therefore 2. Unlike the truss in Example 5.8, we could
not remove any member, since if BC or CD were removed, the outer half of the truss would become a
mechanism, while the portion ABDE would remain statically indeterminate. Therefore, we select AD
and the support at C as the releases, giving the statically determinate truss shown in Fig. 5.21(b); we
shall designate the force in the member AD as X1 and the vertical reaction at C as R2.
In this case, we shall have two compatibility conditions, one for the diagonal AD and one for

the support at C. We therefore need to investigate three loading cases: one in which the actual
loads are applied to the released statically determinate truss in Fig. 5.21(b), a second in which unit
loads are applied to the cut member AD (Fig. 5.21(c)), and a third in which a unit load is applied
at C in the direction of R2 (Fig. 5.21(d)). By comparing the previous example, the compatibility
conditions are

�AD+ a11X1+ a12R2 = 0 (i)

vC+ a21X1+ a22R2 = 0 (ii)
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Fig. 5.21

Statically indeterminate truss of Example 5.9.

in which �AD and vC are, respectively, the change in length of the diagonal AD and the vertical
displacement of C due to the actual loads acting on the released truss, while a11, a12, and so on are
flexibility coefficients, which we have previously defined. The calculations are similar to those carried
out in Example 5.8 and are shown in Table 5.7. From that table,

�AD =
n∑
j=1

F0, jF1, j(X1)Lj
AE

= −27.1
AE

(i.e., AD increases in length)

vC =
n∑
j=1

F0, jF1, j(R2)Lj
AE

= −48.11
AE

(i.e., C displaced downwards)

a11 =
n∑
j=1

F21, j(X1)Lj

AE
= 4.32

AE
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Table 5.7

F0, jF1, j F0, jF1, j F1, j(X1)
Member Lj F0, j F1, j(X1) F1, j(R2) (X1)Lj (R2)Lj F21, j(X1)Lj F21, j(R2)Lj F1, j(R2)Lj Fa, j

AB 1 10.0 −0.71 −2.0 −7.1 −20.0 0.5 4.0 1.41 0.67

BC 1.41 0 0 −1.41 0 0 0 2.81 0 −4.45
CD 1 0 0 1.0 0 0 0 1.0 0 3.15

DE 1 0 −0.71 1.0 0 0 0.5 1.0 −0.71 0.12

AD 1.41 0 1.0 0 0 0 1.41 0 0 4.28

BE 1.41 −14.14 1.0 1.41 −20.0 −28.11 1.41 2.81 2.0 −5.4
BD 1 0 −0.71 0 0 0 0.5 0 0 −3.03

�=−27.1 �=−48.11 �=4.32 �=11.62 �=2.7

a22 =
n∑
j=1

F21, j(R2)Lj

AE
= 11.62

AE

a12 = a21
n∑
j=1

F1, j(X1)F1, j(R2)Lj
AE

= 2.7

AE

Substituting in Eqs. (i) and (ii) and multiplying through by AE, we have

−27.1+ 4.32X1+ 2.7R2 = 0 (iii)

−48.11+ 2.7X1+ 11.62R2 = 0 (iv)

Solving Eqs. (iii) and (iv), we obtain

X1 = 4.28kN R2 = 3.15kN
The actual forces, Fa, j, in the members of the complete truss are now calculated by the method of joints
and are listed in the final column of Table 5.7.

5.6.1 Self-Straining Trusses
Statically indeterminate trusses, unlike the statically determinate type,may be subjected to self-straining
in which internal forces are present before external loads are applied. Such a situation may be caused
by a local temperature change or by an initial lack of fit of a member. In cases such as these, the term
on the right-hand side of the compatibility equations, Eq. (ii) in Example 5.8 and Eqs. (i) and (ii) in
Example 5.9, would not be zero.

Example 5.10
The truss shown in Fig. 5.22(a) is unstressed when the temperature of each member is the same, but
due to local conditions, the temperature in the member BC is increased by 30◦C. If the cross-sectional
area of each member is 200mm2 and the coefficient of linear expansion of the members is 7×10−6/◦C,
calculate the resulting forces in the members; Young’s modulus E=200000N/mm2.
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Due to the temperature rise, the increase in length of the member BC is 3×103×30×
7×10−6=0.63mm. The truss has a degree of internal statical indeterminacy equal to 1 (by inspec-
tion). We therefore release the truss by cutting the member BC, which has experienced the temperature
rise, as shown in Fig. 5.22(b); we shall suppose that the force in BC is X1. Since there are no external
loads on the truss, �BC is zero and the compatibility condition becomes

a11X1 = −0.63mm (i)

in which, as before

a11 =
n∑
j=1

F21, jLj

AE

Note that the extension of BC is negative, since it is opposite in direction to X1. The solution is now
completed in Table 5.8. Hence,

a11 = 48000

200× 200000 = 1.2× 10−3

Fig. 5.22

Self-straining due to a temperature change.

Table 5.8

Member Lj(mm) F1, j F21, jLj Fa, j(N)

AB 4000 1.33 7111.1 −700
BC 3000 1.0 3000.0 −525
CD 4000 1.33 7111.1 −700
DA 3000 1.0 3000.0 −525
AC 5000 −1.67 13888.9 875
DB 5000 −1.67 13888.9 875

�=48000.0
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Then, from Eq. (i),

X1 = −525N
The forces, Fa, j, in the members of the complete truss are given in the final column of Table 5.8.
Compare the preceding with the solution of Example 5.4.

5.7 TOTAL POTENTIAL ENERGY
In the spring–mass system shown in its unstrained position in Fig. 5.23(a), we normally define the
potential energy of themass as the product of itsweight,Mg, and its height,h, above somearbitrarilyfixed
datum. In other words, it possesses energy by virtue of its position. After deflection to an equilibrium
state (Fig. 5.23(b)), the mass has lost an amount of potential energy equal to Mgy. Thus, we may
associate deflection with a loss of potential energy. Alternatively, we may argue that the gravitational
force acting on the mass does work during its displacement, resulting in a loss of energy. Applying this
reasoning to the elastic system of Fig. 5.1(a) and assuming that the potential energy of the system is
zero in the unloaded state, then the loss of potential energy of the load P as it produces a deflection y is
Py. Thus, the potential energy V of P in the deflected equilibrium state is given by

V = −Py
We now define the TPE of a system in its deflected equilibrium state as the sum of its internal or strain
energy and the potential energy of the applied external forces. Hence, for the single member–force
configuration of Fig. 5.1(a),

TPE = U +V =
y∫
0

Pdy−Py

For a general system consisting of loads P1,P2, . . . ,Pn producing corresponding displacements
(i.e., displacements in the directions of the loads; see Section 5.10)�1, �2, . . . ,�n, the potential energy

Fig. 5.23

(a) Potential energy of a spring–mass system and (b) loss in potential energy due to change in position.
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of all the loads is

V =
n∑
r=1
Vr =

n∑
r=1

(−Pr�r)

and the TPE of the system is given by

TPE = U +V = U +
n∑
r=1

(−Pr�r) (5.22)

5.8 THE PRINCIPLE OF THE STATIONARY VALUE
OF THE TOTAL POTENTIAL ENERGY

Let us now consider an elastic body in equilibrium under a series of external loads, P1, P2, . . . ,Pn, and
suppose that we impose small virtual displacements δ�1,δ�2, . . . ,δ�n in the directions of the loads.
The virtual work done by the loads is then

n∑
r=1
Prδ�r

This work will be accompanied by an increment of strain energy δU in the elastic body, since by
specifying virtual displacements of the loads we automatically impose virtual displacements on the
particles of the body itself, as the body is continuous and is assumed to remain so. This increment in
strain energy may be regarded as negative virtual work done by the particles so that the total work done
during the virtual displacement is

−δU +
n∑
r=1
Prδ�r

The body is in equilibrium under the applied loads so that by the principle of virtual work the
preceding expression must be equal to zero. Hence

δU −
n∑
r=1
Prδ�r = 0 (5.23)

The loads Pr remain constant during the virtual displacement; therefore, Eq. (5.23) may be written

δU − δ

n∑
r=1
Pr�r = 0

or, from Eq. (5.22)

δ(U +V) = 0 (5.24)

Thus, the total potential energy of an elastic system has a stationary value for all small displacements
if the system is in equilibrium.
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Fig. 5.24

States of equilibrium of a particle.

It may also be shown that if the stationary value is aminimum, the equilibrium is stable. A qualitative
demonstration of this fact is sufficient for our purposes, although mathematical proofs exist [Ref. 1].
In Fig. 5.24, the positions A, B, and C of a particle correspond to different equilibrium states. The
TPE of the particle in each of its three positions is proportional to its height h above some arbitrary
datum, since we are considering a single particle for which the strain energy is zero. Clearly at each
position, the first-order variation, ∂(U+V)/∂u, is zero (indicating equilibrium), but only at B where
the TPE is a minimum is the equilibrium stable. At A and C, we have unstable and neutral equilibrium,
respectively.
To summarize, the principle of the stationary value of the TPE may be stated as follows:

The total potential energy of an elastic system has a stationary value for all small displacements when
the system is in equilibrium; further, the equilibrium is stable if the stationary value is a minimum.

This principle may often be used in the approximate analysis of structures where an exact analysis
does not exist. We shall illustrate the application of the principle in Example 5.11 following, where we
shall suppose that the displaced form of the beam is unknown and must be assumed; this approach is
called the Rayleigh–Ritz method.

Example 5.11
Determine the deflection of the midspan point of the linearly elastic, simply supported beam shown in
Fig. 5.25; the flexural rigidity of the beam is EI.

The assumed displaced shape of the beam must satisfy the boundary conditions for the beam.
Generally, trigonometric or polynomial functions have been found to be the most convenient, but the
simpler the function, the less accurate the solution. Let us suppose that the displaced shape of the beam
is given by

v= vB sin πz

L
(i)
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Fig. 5.25

Approximate determination of beam deflection using total potential energy.

in which vB is the displacement at the midspan point. FromEq. (i), we see that v=0when z=0 and z=L
and that v=vB when z=L/2. Also dv/dz=0 when z=L/2 so that the displacement function satisfies
the boundary conditions of the beam.
The strain energy, U, due to bending of the beam is given in Structural and Stress Analysis [Ref. 3]

U =
∫
L

M2

2EI
dz (ii)

Also,

M = −EI d
2v

dz2
(see Chapter 15) (iii)

Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from (iii)

U = EI

2

L∫
0

v2Bπ
4

L4
sin2

πz

L
dz

which gives

U = π4EIv2B
4L3

The TPE of the beam is then given by

TPE = U +V = π4EIv2B
4L3

−WvB
Then, from the principle of the stationary value of the TPE,

∂(U +V)

∂vB
= π4EIvB

2L3
−W = 0
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from which

vB = 2WL3

π 4EI
= 0.02053WL

3

EI
(iv)

The exact expression for the midspan displacement [Ref. 3] is

vB = WL3

48EI
= 0.02083WL

3

EI
(v)

Comparing the exact (Eq. (v)) and approximate results (Eq. (iv)), we see that the difference is less
than 2 percent. Further, the approximate displacement is less than the exact displacement, since, by
assuming a displaced shape, we have, in effect, forced the beam into taking that shape by imposing
restraint; the beam is therefore stiffer.

5.9 PRINCIPLE OF SUPERPOSITION
An extremely useful principle used in the analysis of linearly elastic structures is that of superposition.
The principle states that if the displacements at all points in an elastic body are proportional to the forces
producing them—that is, the body is linearly elastic—the effect on such a body of a number of forces
is the sum of the effects of the forces applied separately. We shall make immediate use of the principle
in the derivation of the reciprocal theorem in the following section.

5.10 THE RECIPROCAL THEOREM
The reciprocal theorem is an exceptionally powerful method of analysis of linearly elastic structures
and is accredited in turn toMaxwell, Betti, and Rayleigh. However, before we establish the theorem, we
first consider a useful property of linearly elastic systems resulting from the principle of superposition.
The principle enables us to express the deflection of any point in a structure in terms of a constant
coefficient and the applied loads. For example, a load P1 applied at a point 1 in a linearly elastic body
produces a deflection �1 at the point given by

�1 = a11P1
in which the influence or flexibility coefficient a11 is defined as the deflection at the point 1 in the
direction of P1, produced by a unit load at the point 1 applied in the direction of P1. Clearly, if the body
supports a system of loads such as those shown in Fig. 5.26, each of the loads P1,P2, . . . ,Pn contributes
to the deflection at the point 1. Thus, the corresponding deflection �1 at the point 1 (i.e., the total
deflection in the direction of P1 produced by all the loads) is then

�1 = a11P1+ a12P2+ ·· ·+ a1nPn
where a12 is the deflection at the point 1 in the direction of P1, produced by a unit load at the point 2
in the direction of the load P2, and so on. The corresponding deflections at the points of application of
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Fig. 5.26

Linearly elastic body subjected to loads P1, P2, P3, …, Pn.

the complete system of loads are then

�1 = a11P1+ a12P2+ a13P3+ ·· ·+ a1nPn
�2 = a21P1+ a22P2+ a23P3+ ·· ·+ a2nPn
�3 = a31P1+ a32P2+ a33P3+ ·· ·+ a3nPn
...

�n = an1P1+ an2P2+ an3P3+ ·· ·+ annPn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.25)

or, in matrix form ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1
�2
�3
...

�n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 … a1n
a21 a22 a23 … a2n
a31 a32 a33 … a3n
...

...
...

...

an1 an2 an3 … ann

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1
P2
P3
...
Pn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

which may be written in shorthand matrix notation as

{�} = [A]{P}
Suppose now that an elastic body is subjected to a gradually applied force P1 at a point 1, and then,

while P1 remains in position, a force P2 is gradually applied at another point 2. The total strain energy
U of the body is given by

U1 = P1
2

(a11P1) + P2
2

(a22P2) +P1(a12P2) (5.26)

The third term on the right-hand side of Eq. (5.26) results from the additional work done by P1 as it is
displaced through a further distance a12P2 by the action of P2. If we now remove the loads and apply
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P2 followed by P1, we have

U2 = P2
2

(a22P2) + P1
2

(a11P1) +P2(a21P1) (5.27)

By the principle of superposition, the strain energy stored is independent of the order in which the
loads are applied. Hence,

U1 = U2
and it follows that

a12 = a21 (5.28)

Thus, in its simplest form the reciprocal theorem states that

The deflection at a point 1 in a given direction due to a unit load at a point 2 in a second direction is
equal to the deflection at the point 2 in the second direction due to a unit load at the point 1 in the
first direction.

In a similar manner, we derive the relationship between moments and rotations, thus

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at the point 2
produced by a unit moment at the point 1.

Finally, we have

The rotation at a point 1 due to a unit load at a point 2 is numerically equal to the deflection at the
point 2 in the direction of the unit load due to a unit moment at the point 1.

Example 5.12
A cantilever 800mm long with a prop 500mm from the wall deflects in accordance with the following
observations when a point load of 40 N is applied to its end.

Distance (mm) 0 100 200 300 400 500 600 700 800
Deflection (mm) 0 −0.3 −1.4 −2.5 −1.9 0 2.3 4.8 10.6

What will be the angular rotation of the beam at the prop due to a 30N load applied 200mm from the
wall, together with a 10N load applied 350mm from the wall?

The initial deflected shape of the cantilever is plotted as shown in Fig. 5.27(a) and the deflections at
D and E produced by the 40 N load determined. The solution then proceeds as follows.

Deflection at D due to 40N load at C=−1.4mm.
Hence, from the reciprocal theorem, the deflection at C due to a 40N load at D=−1.4mm.
It follows that the deflection at C due to a 30N load at D=− 3

4 ×1.4=−1.05mm.
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Fig. 5.27

(a) Given deflected shape of propped cantilever; (b) determination of the deflection of C.

Similarly, the deflection at C due to a 10N load at E=− 1
4 ×2.4=−0.6mm. Therefore, the

total deflection at C, produced by the 30 and 10N loads acting simultaneously (Fig. 5.27(b)), is
−1.05−0.6=−1.65mm from which the angular rotation of the beam at B, θB, is given by

θB = tan−1 1.65
300

= tan−1 0.0055

or

θB = 0◦19′

Example 5.13
An elastic member is pinned to a drawing board at its ends A and B. When a moment M is applied at
A, A rotates θA, B rotates θB, and the center deflects δ1. The same moment M applied to B rotates B,
θC and deflects the center through δ2. Find the moment induced at A when a load W is applied to the
center in the direction of the measured deflections, both A and B being restrained against rotation.

The three load conditions and the relevant displacements are shown in Fig. 5.28. Thus, from
Fig. 5.28(a) and (b), the rotation at A due to M at B is, from the reciprocal theorem, equal to the
rotation at B due to M at A. Hence,

θA(b) = θB

It follows that the rotation at A due to MB at B is

θA(c),1 = MB
M

θB (i)

Also, the rotation at A due to unit load at C is equal to the deflection at C due to unit moment at A.
Therefore,

θA(c),2

W
= δ1

M
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Fig. 5.28

Model analysis of a fixed beam.

or

θA(c),2 = W

M
δ1 (ii)

where θA(c),2 is the rotation at A due to W at C. Finally, the rotation at A due to MA at A is, from
Fig. 5.28(a) and (c),

θA(c),3 = MA
M

θA (iii)

The total rotation at A produced by MA at A, W at C, and MB at B is, from Eqs. (i), (ii), and (iii),

θA(c),1+ θA(c),2+ θA(c),3 = MB
M

θB+ W

M
δ1+ MA

M
θA = 0 (iv)

since the end A is restrained from rotation. Similarly, the rotation at B is given by

MB
M

θC+ W

M
δ2+ MA

M
θB = 0 (v)

Solving Eqs. (iv) and (v) for MA gives

MA =W
(

δ2θB− δ1θC

θAθC− θ2B

)

The fact that the arbitrary moment M does not appear in the expression for the restraining moment
at A (similarly it does not appear in MB), produced by the load W , indicates an extremely useful
application of the reciprocal theorem, namely the model analysis of statically indeterminate structures.
For example, the fixed beam of Fig. 5.28(c) could possibly be a full-scale bridge girder. It is then only
necessary to construct a model, say of Perspex, having the same flexural rigidity EI as the full-scale
beam and measure rotations and displacements produced by an arbitrary moment M to obtain fixing
moments in the full-scale beam supporting a full-scale load.
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5.11 TEMPERATURE EFFECTS
A uniform temperature applied across a beam section produces an expansion of the beam, as shown in
Fig. 5.29, provided there are no constraints. However, a linear temperature gradient across the beam
section causes the upper fibers of the beam to expand more than the lower ones, producing a bending
strain as shown in Fig. 5.30 without the associated bending stresses, again provided no constraints are
present.
Consider an element of the beam of depth h and length δz subjected to a linear temperature gradient

over its depth, as shown in Fig. 5.31(a). The upper surface of the element increases in length to δz(1+αt)
(see Section 1.15.1) where α is the coefficient of linear expansion of the material of the beam. Thus,
from Fig. 5.31(b),

R

δz
= R+ h

δz(1+ αt)

giving

R= h/αt (5.29)

Also,

δθ = δz/R

so that from Eq. (5.29),

δθ = δzαt

h
(5.30)

Fig. 5.29

Expansion of beam due to uniform temperature.

Fig. 5.30

Bending of beam due to linear temperature gradient.
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Fig. 5.31

(a) Linear temperature gradient applied to beam element; (b) bending of beam element due to temperature
gradient.

Wemay now apply the principle of the stationary value of the total complementary energy in conjunction
with the unit load method to determine the deflection �Te, due to the temperature of any point of the
beam shown in Fig. 5.30. We have seen that the preceding principle is equivalent to the application of
the principle of virtual work where virtual forces act through real displacements. Therefore, we may
specify that the displacements are those produced by the temperature gradient, while the virtual force
system is the unit load. Thus, the deflection �Te,B of the tip of the beam is found by writing down
the increment in total complementary energy caused by the application of a virtual unit load at B and
equating the resulting expression to zero (see Eqs. (5.7) and (5.12)). Thus,

δC =
∫
L

M1dθ − 1�Te,B = 0

or

�Te,B =
∫
L

M1 dθ (5.31)

whereM1 is the bending moment at any section due to the unit load. Substituting for dθ from Eq. (5.30),
we have

�Te,B =
∫
L

M1
αt

h
dz (5.32)

where t can vary arbitrarily along the span of the beam but only linearly with depth. For a beam
supporting some form of external loading, the total deflection is given by the superposition of the
temperature deflection from Eq. (5.32) and the bending deflection from Eq. (5.21); thus,

� =
∫
L

M1

(
M0
EI

+ αt

h

)
dz (5.33)
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Fig. 5.32

Beam of Example 5.14.

Example 5.14
Determine the deflection of the tip of the cantilever in Fig. 5.32 with the temperature gradient
shown.

Applying a unit load vertically downward at B, M1=1×z. Also the temperature t at a section z is
t0(l−z)/l. Substituting in Eq. (5.32) gives

�Te,B =
l∫
0

z
α

h

t0
l
(l− z)dz (i)

Integrating Eq. (i) gives

�Te,B = αt0l2

6h
(i.e., downward)
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Problems
P.5.1 Find the magnitude and the direction of the movement of the joint C of the plane pin-jointed frame loaded
as shown in Fig. P.5.1. The value of L/AE for each member is 1/20mm/N.

Ans. 5.24mm at 14.7◦ to left of vertical.
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Fig. P.5.1

P.5.2 A rigid triangular plate is suspended from a horizontal plane by three vertical wires attached to its corners.
The wires are each 1mm diameter and 1440mm long, with a modulus of elasticity of 196000N/mm2. The ratio
of the lengths of the sides of the plate is 3:4:5. Calculate the deflection at the point of application due to a 100 N
load placed at a point equidistant from the three sides of the plate.

Ans. 0.33mm.

P.5.3 The pin-jointed space frame shown in Fig. P.5.3 is attached to rigid supports at points 0, 4, 5, and 9 and
is loaded by a force P in the x direction and a force 3P in the negative y direction at the point 7. Find the rotation
of member 27 about the z axis due to this loading. Note that the plane frames 01234 and 56789 are identical. All
members have the same cross-sectional area A and Young’s modulus E.

Ans. 382P/9AE.

Fig. P.5.3

P.5.4 A horizontal beam is of uniform material throughout but has a second moment of area of I for the central
half of the span L and I/2 for each section in both outer quarters of the span. The beam carries a single central
concentrated load P.
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(a) Derive a formula for the central deflection of the beam, due to P, when simply supported at each end of the
span.

(b) If both ends of the span are encastré, determine the magnitude of the fixed end moments.

Ans. 3PL3/128EI, 5PL/48 (hogging).

P.5.5 The tubular steel post shown in Fig. P.5.5 supports a load of 250N at the free end C. The outside diameter of
the tube is 100mm, and the wall thickness is 3mm. Neglecting the weight of the tube find the horizontal deflection
at C. The modulus of elasticity is 206000N/mm2.

Ans. 53.3mm.

Fig. P.5.5

P.5.6 A simply supported beam AB of span L and uniform section carries a distributed load of intensity varying
from zero at A to w0/unit length at B according to the law

w= 2w0z

L

(
1− z

2L

)
per unit length. If the deflected shape of the beam is given approximately by the expression

v= a1 sin πz

L
+ a2 sin 2πz

L
evaluate the coefficients a1 and a2 and find the deflection of the beam at midspan.

Ans. a1=2w0L4(π2+ 4)/EIπ7, a2=−w0L4/16EIπ5, 0.00918w0L4/EI .
P.5.7 Auniformsimply supported beam, spanL, carries a distributed loadingwhichvaries according to a parabolic
law across the span. The load intensity is zero at both ends of the beam and w0 at its midpoint. The loading is normal
to a principal axis of the beam cross section, and the relevant flexural rigidity is EI. Assuming that the deflected
shape of the beam can be represented by the series

v =
∞∑
i=1
ai sin

iπz

L

find the coefficients ai and the deflection at the midspan of the beam using the first term only in the above series.

Ans. ai=32w0L4/EIπ7i7 (i odd), w0L4/94.4EI .
P.5.8 Figure P.5.8 shows a plane pin-jointed framework pinned to a rigid foundation. All its members are made
of the same material and have equal cross-sectional area A, except member 12 which has area A

√
2.
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Fig. P.5.8

Under some system of loading, member 14 carries a tensile stress of 0.7N/mm2. Calculate the change in
temperature which, if applied to member 14 only, would reduce the stress in that member to zero. Take the
coefficient of linear expansion as α=24×10−6/◦C and Young’s modulus E=70000N/mm2.

Ans. 5.6◦C.

P.5.9 The plane, pin-jointed rectangular framework shown in Fig. P.5.9(a) has one member (24) which is
loosely attached at joint 2 so that relative movement between the end of the member and the joint may occur
when the framework is loaded. This movement is a maximum of 0.25mm and takes place only in the direc-
tion 24. Figure P.5.9(b) shows joint 2 in detail when the framework is unloaded. Find the value of the load
P at which member 24 just becomes an effective part of the structure and also the loads in all the members
when P is 10000N. All bars are of the same material (E=70000N/mm2) and have a cross-sectional area
of 300mm2.

Ans. P=294N, F12=2481.6N(T), F23=1861.2N(T ), F34=2481.6N(T ), F41=5638.9N(C),
F13=9398.1N(T ), F24=3102.0N(C).

Fig. P.5.9
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P.5.10 The plane frame ABCD of Fig. P.5.10 consists of three straight members with rigid joints at B and C, freely
hinged to rigid supports at A and D. The flexural rigidity of AB and CD is twice that of BC. A distributed load is
applied to AB, varying linearly in intensity from zero at A to w per unit length at B.

Determine the distribution of bending moment in the frame, illustrating your results with a sketch showing the
principal values.

Ans. MB=7wl2/45, MC=8wl2/45, cubic distribution on AB, linear on BC and CD.

Fig. P.5.10

P.5.11 A bracket BAC is composed of a circular tube AB, whose second moment of area is 1.5I , and a beam AC,
whose second moment of area is I and which has negligible resistance to torsion. The two members are rigidly
connected together at A and built into a rigid abutment at B and C, as shown in Fig. P.5.11. A load P is applied at
A in a direction normal to the plane of the figure.

Determine the fraction of the load which is supported at C. Both members are of the same material for which
G=0.38E.
Ans. 0.72P.

Fig. P.5.11
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P.5.12 In the plane pin-jointed framework shown in Fig. P.5.12, bars 25, 35, 15, and 45 are linearly elastic with
modulus of elasticity E. The remaining three bars obey a nonlinear elastic stress–strain law given by

ε = τ

E

[
1+

(
τ

τ0

)n]

where τ is the stress corresponding to strain ε. Bars 15, 45, and 23 each have a cross-sectional area A, and each of
the remainder has an area of A/

√
3. The length of member 12 is equal to the length of member 34=2L.

If a vertical load P0 is applied at joint 5 as shown, show that the force in the member 23, that is, F23, is given
by the equation

αnxn+1+ 3.5x+ 0.8= 0

Fig. P.5.12

where

x = F23/P0 and α = P0/Aτ0

P.5.13 Figure P.5.13 shows a plan view of two beams, AB 9150mm long and DE 6100mm long. The simply
supported beam AB carries a vertical load of 100000N applied at F, a distance one-third of the span from B. This
beam is supported at C on the encastré beam DE. The beams are of uniform cross section and have the same second
moment of area 83.5×106mm4. E=200000N/mm2. Calculate the deflection of C.

Ans. 5.6mm

Fig. P.5.13
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P.5.14 The plane structure shown in Fig. P.5.14 consists of a uniform continuous beam ABC pinned to a fixture
at A and supported by a framework of pin-jointed members. All members other than ABC have the same cross-
sectional area A. For ABC, the area is 4A and the second moment of area for bending is Aa2/16. The material is
the same throughout. Find (in terms of w, A, a, and Young’s modulus E) the vertical displacement of point D under
the vertical loading shown. Ignore shearing strains in the beam ABC.

Ans. 30232wa2/3AE.

Fig. P.5.14

P.5.15 The fuselage frame shown in Fig. P.5.15 consists of two parts, ACB and ADB, with frictionless pin joints
at A and B. The bending stiffness is constant in each part, with value EI for ACB and xEI for ADB. Find x so that
the maximum bending moment in ADB will be one-half of that in ACB. Assume that the deflections are due to
bending strains only.

Ans. 0.092.

Fig. P.5.15

P.5.16 A transverse frame in a circular section fuel tank is of radius r and constant bending stiffness EI. The
loading on the frame consists of the hydrostatic pressure due to the fuel and the vertical support reaction P, which
is equal to the weight of fuel carried by the frame, as shown in Fig. P.5.16.
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Fig. P.5.16

Taking into account only strains due to bending, calculate the distribution of bending moment around the frame
in terms of the force P, the frame radius r, and the angle θ .

Ans. M=Pr(0.160−0.080cosθ −0.159θ sinθ)

P.5.17 The frame shown in Fig. P.5.17 consists of a semicircular arc, center B, radius a, of constant flexural rigidity
EI jointed rigidly to a beam of constant flexural rigidity 2EI. The frame is subjected to an outward loading as shown
arising from an internal pressure p0.

Find the bending moment at points A, B, and C and locate any points of contraflexure.
A is the midpoint of the arc. Neglect deformations of the frame due to shear and normal forces.

Ans. MA=−0.057p0a2, MB=−0.292p0a2, MC=0.208p0a2.
Points of contraflexure: in AC, at 51.7◦ from horizontal; in BC, 0.764a from B.

Fig. P.5.17

P.5.18 The rectangular frame shown in Fig. P.5.18 consists of two horizontal members 123 and 456 rigidly joined
to three vertical members 16, 25, and 34. All five members have the same bending stiffness EI.

Fig. P.5.18
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The frame is loaded in its own plane by a system of point loads P which are balanced by a constant shear flow q
around the outside. Determine the distribution of the bending moment in the frame and sketch the bending moment
diagram. In the analysis, take bending deformations only into account.

Ans. Shears only at midpoints of vertical members. On the lower half of the frame, S43=0.27P to right,
S52=0.69P to left, S61=1.08P to left; the bending moment diagram follows.

P.5.19 A circular fuselage frame shown in Fig. P.5.19, of radius r and constant bending stiffness EI, has a straight
floor beam of length r

√
2, bending stiffness EI, rigidly fixed to the frame at either end. The frame is loaded by a

couple T applied at its lowest point and a constant equilibrating shear flow q around its periphery. Determine the
distribution of the bending moment in the frame, illustrating your answer by means of a sketch.

In the analysis, deformations due to shear and end load may be considered negligible. The depth of the frame
cross section in comparison with the radius r may also be neglected.

Ans. M14=T(0.29sinθ −0.16θ), M24=0.30Tx/r, M43=T(0.59sinθ −0.16θ).

Fig. P.5.19

P.5.20 A thin-walled member BCD is rigidly built-in at D and simply supported at the same level at C, as shown
in Fig. P.5.20.

Fig. P.5.20

Find the horizontal deflection at B due to the horizontal force F. Full account must be taken of deformations
due to shear and direct strains, as well as to bending.

The member is of uniform cross section, of area A, relevant second moment of area in bending I=Ar2/400
and “reduced” effective area in shearing A′ =A/4. Poisson’s ratio for the material is ν =1/3.
Give the answer in terms of F, r, A, and Young’s modulus E.

Ans. 448Fr/EA.
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P.5.21 Figure P.5.21 shows two cantilevers, the end of one being vertically above the other and connected to it by
a spring AB. Initially the system is unstrained. A weight W placed at A causes a vertical deflection at A of δ1 and
a vertical deflection at B of δ2. When the spring is removed, the weightW at A causes a deflection at A of δ3. Find
the extension of the spring when it is replaced and the weight W is transferred to B.

Ans. δ2(δ1−δ2)/(δ3−δ1).

Fig. P.5.21

P.5.22 A beam 2400 mm long is supported at two points A and B which are 1440mm apart; point A is 360mm
from the left-hand end of the beam and point B is 600mm from the right-hand end; the value of EI for the beam is
240×108Nmm2. Find the slope at the supports due to a load of 2000N applied at the midpoint of AB.
Use the reciprocal theorem in conjunction with the above result, to find the deflection at the midpoint of AB

due to loads of 3000N applied at each of the extreme ends of the beam.

Ans. 0.011, 15.8mm.

P.5.23 Figure P.5.23 shows a frame pinned to its support at A and B. The frame center-line is a circular arc and the
section is uniform, of bending stiffness EI and depth d. Find an expression for the maximum stress produced by a
uniform temperature gradient through the depth, the temperatures on the outer and inner surfaces being respectively
raised and lowered by amount T . The points A and B are unaltered in position.

Ans. 1.30ETα.

Fig. P.5.23

P.5.24 A uniform, semicircular fuselage frame is pin-jointed to a rigid portion of the structure and is subjected
to a given temperature distribution on the inside as shown in Fig. P.5.24. The temperature falls linearly across the
section of the frame to zero on the outer surface. Find the values of the reactions at the pinjoints and show that the
distribution of the bending moment in the frame is

M = 0.59EIαθ0 cosψ

h
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Fig. P.5.24

given that

(a) the temperature distribution is

θ = θ0 cos2ψ for −π/4< ψ < π/4

θ = 0 for −π/4> ψ > π/4

(b) bending deformations only are to be taken into account:

α = coefficient of linear expansion of frame material
EI = bending rigidity of frame
h = depth of cross section
r = mean radius of frame.



CHAPTER

6Matrix Methods

Actual aircraft structures consist of numerous components generally arranged in an irregular manner.
These components are usually continuous and therefore theoretically possess an infinite number of
degrees of freedom and redundancies. Analysis is then only possible if the actual structure is replaced
by an idealized approximation or model. This procedure is discussed to some extent in Chapter 19,
where we note that the greater the simplification introduced by the idealization, the less complex but
more inaccurate the analysis becomes. In aircraft design, where structural weight is of paramount
importance, an accurate knowledge of component loads and stresses is essential so that at some stage
in the design these must be calculated as accurately as possible. This accuracy may only be achieved by
considering an idealized structure which closely represents the actual structure. Standard methods of
structural analysis are inadequate for coping with the necessary degree of complexity in such idealized
structures. It was this situation which led, in the late 1940s and early 1950s, to the development of matrix
methods of analysis and at the same time to the emergence of high-speed, electronic, digital computers.
Conveniently, matrix methods are ideally suited for expressing structural theory and for expressing the
theory in a form suitable for numerical solution by computer.
A structural problemmay be formulated in either of two different ways. One approach proceeds with

the displacements of the structure as the unknowns, the internal forces then follow from the determination
of these displacements, while in the alternative approach, forces are treated as being initially unknown.
In the language of matrix methods, these two approaches are known as the stiffness (or displacement)
method and the flexibility (or force) method, respectively. The most widely used of these two methods
is the stiffness method, and for this reason, we shall concentrate on this particular approach. Argyris
and Kelsey [Ref. 1], however, showed that complete duality exists between the two methods in that the
form of the governing equations is the same whether they are expressed in terms of displacements or
forces.
Generally, actual structures must be idealized to some extent before they become amenable to

analysis. Examples of some simple idealizations and their effect on structural analysis are presented
in Chapter 19 for aircraft structures. Outside the realms of aeronautical engineering, the representation
of a truss girder by a pin-jointed framework is a well-known example of the idealization of what are
known as “skeletal” structures. Such structures are assumed to consist of a number of elements joined
at points called nodes. The behavior of each element may be determined by basic methods of structural
analysis, and hence, the behavior of the complete structure is obtained by superposition. Operations
such as these are easily carried out by matrix methods, as we shall see later in this chapter.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00006-3 169
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A more difficult type of structure to idealize is the continuum structure; in this category are dams,
plates, shells, and, obviously, aircraft fuselage andwing skins. Amethod, extending thematrix technique
for skeletal structures, of representing continua by any desired number of elements connected at their
nodes was developed by Clough et al. [Ref. 2] at the Boeing Aircraft Company and the University of
Berkeley in California. The elements may be of any desired shape, but the simplest, used in plane stress
problems, are the triangular and quadrilateral elements. We shall discuss the finite element method, as
it is known, in greater detail later.
Initially, we shall develop the matrix stiffness method of solution for simple skeletal and beam

structures. The fundamentals of matrix algebra are assumed.

6.1 NOTATION
Generally, we shall consider structures subjected to forces, Fx,1, Fy,1, Fz,1, Fx,2, Fy,2,Fz,2, . . . ,
Fx,n, Fy,n, Fz,n, at nodes 1,2, . . . , n at which the displacements are u1, v1, w1, u2, v2, w2, . . . , un,vn,wn.
The numerical suffixes specify nodes, while the algebraic suffixes relate the direction of the forces
to an arbitrary set of axes, x, y, z. Nodal displacements u, v, w represent displacements in the positive
directions of the x, y, and z axes, respectively. The forces and nodal displacements are written as column
matrices (alternatively known as column vectors)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1
Fy,1
Fz,1
Fx,2
Fy,2
Fz,2
...

Fx,n
Fy,n
Fz,n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
w1
u2
v2
w2
...

un
vn
wn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which, when once established for a particular problem, may be abbreviated to

{F} {δ}
The generalized force system {F} can contain momentsM and torques T in addition to direct forces,

in which case {δ} includes rotations θ . Therefore, in referring simply to a nodal force system, we
imply the possible presence of direct forces, moments, and torques, while the corresponding nodal
displacements can be translations and rotations. For a complete structure, the nodal forces and nodal
displacements are related through a stiffness matrix [K]. We shall see that, in general,

{F} = [K]{δ} (6.1)
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where [K] is a symmetric matrix of the form

[K]=

⎡
⎢⎢⎣
k11 k12 · · · k1n
k21 k22 · · · k2n
· · · · · · · · · · · ·
kn1 kn2 · · · knn

⎤
⎥⎥⎦ (6.2)

The element kij (i.e., the element located in row i and in column j) is known as the stiffness influence
coefficient (note kij=kji). Once the stiffness matrix [K] has been formed, the complete solution to a
problem follows from routine numerical calculations that are carried out, in most practical cases, by
computer.

6.2 STIFFNESS MATRIX FOR AN ELASTIC SPRING
The formation of the stiffness matrix [K] is the most crucial step in the matrix solution of any structural
problem. We shall show in the subsequent work how the stiffness matrix for a complete structure may
be built up from a consideration of the stiffness of its individual elements. First, however, we shall
investigate the formation of [K] for a simple spring element which exhibits many of the characteristics
of an actual structural member.
The spring of stiffness k shown in Fig. 6.1 is aligned with the x axis and supports forces Fx,1 and

Fx,2 at its nodes 1 and 2 where the displacements are u1 and u2. We build up the stiffness matrix for
this simple case by examining different states of nodal displacement. First, we assume that node 2 is
prevented from moving such that u1=u1 and u2=0. Hence,

Fx,1 = ku1
and from equilibrium, we see that

Fx,2 = −Fx,1 = −ku1 (6.3)

which indicates that Fx,2 has become a reactive force in the opposite direction to Fx,1. Second, we take
the reverse case where u1=0 and u2=u2 and obtain

Fx,2 = ku2 = −Fx,1 (6.4)

Fig. 6.1

Determination of stiffness matrix for a single spring.
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By superposition of these two conditions, we obtain relationships between the applied forces and the
nodal displacements for the state when u1=u1 and u2=u2. Thus,

Fx,1 = ku1− ku2
Fx,2 = −ku1+ ku2

}
(6.5)

Writing Eq. (6.5) in matrix form, we have{
Fx,1
Fx,2

}
=
[
k −k

−k k

]{
u1
u2

}
(6.6)

and by comparing with Eq. (6.1), we see that the stiffness matrix for this spring element is

[K]=
[
k −k

−k k

]
(6.7)

which is a symmetric matrix of order 2×2.

6.3 STIFFNESS MATRIX FOR TWO ELASTIC SPRINGS IN LINE
Bearing in mind the results of the previous section, we shall now proceed, initially by a similar process,
to obtain the stiffness matrix of the composite two-spring system shown in Fig. 6.2. The notation and
sign convention for the forces and nodal displacements are identical to those specified in Section 6.1.
First, let us suppose that u1=u1 and u2=u3=0. By comparing the single-spring case, we have

Fx,1 = kau1 = −Fx,2 (6.8)

but, in addition, Fx,3=0, since u2=u3=0.
Second, we put u1=u3=0 and u2=u2. Clearly, in this case, the movement of node 2 takes place

against the combined spring stiffnesses ka and kb. Hence,

Fx,2 = (ka + kb)u2
Fx,1 = −kau2, Fx,3 = −kbu2

}
(6.9)

Hence, the reactive force Fx,1(= −kau2) is not directly affected by the fact that node 2 is connected to
node 3, but it is determined solely by the displacement of node 2. Similar conclusions are drawn for the
reactive force Fx,3.

Fig. 6.2

Stiffness matrix for a two-spring system.
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Finally, we set u1=u2=0,u3=u3 and obtain
Fx,3 = kbu3 = −Fx,2
Fx,1 = 0

}
(6.10)

Superimposing these three displacement states, we have, for the condition u1=u1, u2=u2,u3=u3,
Fx,1 = kau1− kau2
Fx,2 = −kau1+ (ka + kb)u2− kbu3
Fx,3 = −kbu2+ kbu3

⎫⎬
⎭ (6.11)

Writing Eqs. (6.11) in matrix form gives⎧⎨
⎩
Fx,1
Fx,2
Fx,3

⎫⎬
⎭=

⎡
⎣ ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤
⎦
⎧⎨
⎩
u1
u2
u3

⎫⎬
⎭ (6.12)

Comparing Eq. (6.12) with Eq. (6.1) shows that the stiffness matrix [K] of this two-spring system is

[K]=
⎡
⎣ ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤
⎦ (6.13)

Equation (6.13) is a symmetric matrix of order 3×3.
It is important to note that the order of a stiffness matrix may be predicted from a knowledge of

the number of nodal forces and displacements. For example, Eq. (6.7) is a 2× 2 matrix connecting two
nodal forces with two nodal displacements; Eq. (6.13) is a 3× 3 matrix relating three nodal forces to
three nodal displacements.We deduce that a stiffnessmatrix for a structure inwhich n nodal forces relate
to n nodal displacements will be of order n× n. The order of the stiffness matrix does not, however,
bear a direct relation to the number of nodes in a structure, since it is possible for more than one force
to be acting at any one node.
So farwe have built up the stiffnessmatrices for the single- and two-spring assemblies by considering

various states of displacement in each case. Such a process would clearly become tedious for more
complex assemblies involving a large number of springs, so a shorter, alternative procedure is desirable.
From our remarks in the preceding paragraph and by reference to Eq. (6.2), we could have deduced at
the outset of the analysis that the stiffness matrix for the two-spring assembly would be of the form

[K]=
⎡
⎣k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤
⎦ (6.14)

The element k11 of this matrix relates the force at node 1 to the displacement at node 1 and so on. Hence,
remembering the stiffnessmatrix for the single spring (Eq. (6.7)), wemaywrite down the stiffnessmatrix
for an elastic element connecting nodes 1 and 2 in a structure as

[K12]=
[
k11 k12
k21 k22

]
(6.15)
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and for the element connecting nodes 2 and 3 as

[K23]=
[
k22 k23
k32 k33

]
(6.16)

In our two-spring system, the stiffness of the spring joining nodes 1 and 2 is ka and that of the spring
joining nodes 2 and 3 is kb. Therefore, by comparing with Eq. (6.7), we may rewrite Eqs. (6.15)
and (6.16) as

[K12]=
[
ka −ka

−ka ka

]
[K23]=

[
kb −kb

−kb kb

]
(6.17)

Substituting in Eq. (6.14) gives

[K]=
⎡
⎢⎣ ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤
⎥⎦

which is identical to Eq. (6.13). We see that only the k22 term (linking the force at node 2 to the
displacement at node 2) receives contributions from both springs. This results from the fact that node 2
is directly connected to both nodes 1 and 3, while nodes 1 and 3 are each joined directly only to node 2.
Also, the elements k13 and k31 of [K] are zero, since nodes 1 and 3 are not directly connected and are
therefore not affected by each other’s displacement.
The formation of a stiffness matrix for a complete structure thus becomes a relatively simple matter

of the superposition of individual or element stiffness matrices. The procedure may be summarized
as follows: terms of the form kii on the main diagonal consist of the sum of the stiffnesses of all the
structural elements meeting at node i, while off-diagonal terms of the form kij consist of the sum of the
stiffnesses of all the elements connecting node i to node j.
An examination of the stiffness matrix reveals that it possesses certain properties. For example, the

sum of the elements in any column is zero, indicating that the conditions of equilibrium are satisfied.
Also, the nonzero terms are concentrated near the leading diagonal, while all the terms in the leading
diagonal are positive; the latter property derives from the physical behavior of any actual structure in
which positive nodal forces produce positive nodal displacements.
Further inspection of Eq. (6.13) shows that its determinant vanishes. As a result the stiffness

matrix [K] is singular and its inverse does not exist. We shall see that this means that the associ-
ated set of simultaneous equations for the unknown nodal displacements cannot be solved for the
simple reason that we have placed no limitation on any of the displacements u1, u2, or u3. Thus,
the application of external loads results in the system moving as a rigid body. Sufficient bound-
ary conditions must therefore be specified to enable the system to remain stable under load. In this
particular problem, we shall demonstrate the solution procedure by assuming that node 1 is fixed—
that is, u1=0.
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The first step is to rewrite Eq. (6.13) in partitioned form as

⎧⎨
⎩
Fx,1
Fx,2
Fx,3

⎫⎬
⎭=

⎡
⎢⎢⎢⎢⎢⎣
ka

... −ka 0
· · · · · · · · · · · · · · · · · · · · · · · ·
−ka

... ka + kb −kb
0

... −kb kb

⎤
⎥⎥⎥⎥⎥⎦
⎧⎨
⎩
u1 = 0
u2
u3

⎫⎬
⎭ (6.18)

In Eq. (6.18), Fx,1 is the unknown reaction at node 1, u1 and u2 are unknown nodal displacements, while
Fx,2 and Fx,3 are known applied loads. Expanding Eq. (6.18) by matrix multiplication, we obtain

{Fx,1} = [−ka 0]

{
u2
u3

} {
Fx,2
Fx,3

}
=
[
ka + kb −kb
−kb kb

]{
u2
u3

}
(6.19)

Inversion of the second of Eqs. (6.19) gives u2 and u3 in terms of Fx,2 and Fx,3. Substitution of these
values in the first equation then yields Fx,1.
Thus, {

u2
u3

}
=
[
ka + kb −kb
−kb kb

]−1{Fx,2
Fx,3

}
or {

u2
u3

}
=
[
1/ka 1/ka
1/ka 1/kb+ 1/ka

]{
Fx,2
Fx,3

}
Hence,

{Fx,1} = [−ka 0]

[
1/ka 1/ka
1/ka 1/kb+ 1/ka

]{
Fx,2
Fx,3

}
which gives

Fx,1 = −Fx,2−Fx,3
as would be expected from equilibrium considerations. In problems where reactions are not required,
equations relating known applied forces to unknown nodal displacements may be obtained by deleting
the rows and columns of [K] corresponding to zero displacements. This procedure eliminates the
necessity of rearranging rows and columns in the original stiffness matrix when the fixed nodes are not
conveniently grouped together.
Finally, the internal forces in the springsmaybedetermined from the force–displacement relationship

of each spring. Thus, if Sa is the force in the spring joining nodes 1 and 2, then

Sa = ka(u2− u1)
Similarly, for the spring between nodes 2 and 3

Sb = kb(u3− u2)
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6.4 MATRIX ANALYSIS OF PIN-JOINTED FRAMEWORKS
The formation of stiffness matrices for pin-jointed frameworks and the subsequent determination of
nodal displacements follow a similar pattern to that described for a spring assembly. A member in such
a framework is assumed to be capable of carrying axial forces only and obeys a unique force–deformation
relationship given by

F = AE

L
δ

where F is the force in the member, δ its change in length, A its cross-sectional area, L its unstrained
length, andE itsmodulus of elasticity. This expression is seen to be equivalent to the spring–displacement
relationships of Eqs. (6.3) and (6.4) so that we may immediately write down the stiffness matrix for a
member by replacing k by AE/L in Eq. (6.7). Thus,

[K]=
[
AE/L −AE/L

−AE/L AE/L

]
or

[K]= AE

L

[
1 −1

−1 1

]
(6.20)

so that for a member aligned with the x axis, joining nodes i and j subjected to nodal forces Fx,i and
Fx, j, we have {

Fx,i
Fx, j

}
= AE

L

[
1 −1

−1 1

]{
ui
uj

}
(6.21)

The solution proceeds in a similar manner to that given in the previous section for a spring or spring
assembly. However, somemodification is necessary, since frameworks consist of members set at various
angles to one another. Figure 6.3 shows a member of a framework inclined at an angle θ to a set of

Fig. 6.3

Local and global coordinate systems for a member of a plane pin-jointed framework.
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arbitrary reference axes x, y. We shall refer every member of the framework to this global coordinate
system, as it is known, when we are considering the complete structure, but we shall use a member or
local coordinate system x̄, ȳ when considering individual members. Nodal forces and displacements
referred to local coordinates are written as F̄, ū, and so on so that Eq. (6.21) becomes, in terms of local
coordinates, {

Fx,i

Fx, j

}
= AE

L

[
1 −1

−1 1

]{
ui

uj

}
(6.22)

where the element stiffness matrix is written [Kij].
In Fig. 6.3, external forces Fx,i and Fx, j are applied to nodes i and j. It should be noted that Fy,i

and Fy, j do not exist, since the member can only support axial forces. However, Fx,i and Fx, j have
components Fx,i, Fy,i and Fx,j, Fy,j, respectively, so that only two force components appear for the
member in terms of local coordinates, whereas four components are present when global coordinates
are used. Therefore, if we are to transfer from local to global coordinates, Eq. (6.22) must be expanded
to an order consistent with the use of global coordinates:⎧⎪⎪⎨

⎪⎪⎩
Fx,i
Fy,i
Fx, j
Fy, j

⎫⎪⎪⎬
⎪⎪⎭= AE

L

⎡
⎢⎢⎣
1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
ui
vi
uj
vj

⎫⎪⎪⎬
⎪⎪⎭ (6.23)

Equation (6.23) does not change the basic relationship between Fx,i, Fx, j and ui, uj as defined in
Eq. (6.22).
From Fig. 6.3, we see that

Fx,i = Fx,i cosθ +Fy,i sinθ

Fy,i = −Fx,i sinθ +Fy,i cosθ
and

Fx, j = Fx, j cosθ +Fy, j sinθ

Fy, j = −Fx, j sinθ +Fy, j cosθ
Writing λ for cosθ and μ for sinθ , we express the preceding equations in matrix form as⎧⎪⎪⎨

⎪⎪⎩
Fx,i
Fy,i
Fx, j
Fy, j

⎫⎪⎪⎬
⎪⎪⎭=

⎡
⎢⎢⎣

λ μ 0 0
−μ λ 0 0
0 0 λ μ

0 0 −μ λ

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
Fx,i
Fy,i
Fx, j
Fy, j

⎫⎪⎪⎬
⎪⎪⎭ (6.24)

or, in abbreviated form,

{F} = [T ]{F} (6.25)
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where [T ] is known as the transformation matrix. A similar relationship exists between the sets of nodal
displacements. Thus, again using our shorthand notation,

{δ̄} = [T ]{δ} (6.26)

Substituting now for {F̄} and {δ̄} in Eq. (6.23) from Eqs. (6.25) and (6.26), we have
[T ]{F} = [Kij][T ]{δ}

Hence,

{F} = [T−1][Kij][T ]{δ} (6.27)

It may be shown that the inverse of the transformation matrix is its transpose:

[T−1]= [T ]T

Thus, we rewrite Eq. (6.27) as

{F} = [T ]T[Kij][T ]{δ} (6.28)

The nodal force system referred to global coordinates {F} is related to the corresponding nodal
displacements by

{F} = [Kij]{δ} (6.29)

where [Kij] is the member stiffness matrix referred to global coordinates. Comparison of Eqs. (6.28)
and (6.29) shows that

[Kij]= [T ]T[Kij][T ]
Substituting for [T ] from Eq. (6.24) and [Kij] from Eq. (6.23), we obtain

[Kij]= AE

L

⎡
⎢⎢⎣

λ2 λμ −λ2 −λμ

λμ μ2 −λμ −μ2

−λ2 −λμ λ2 λμ

−λμ −μ2 λμ μ2

⎤
⎥⎥⎦ (6.30)

By evaluating λ(= cosθ) and μ(= sinθ) for each member and substituting in Eq. (6.30), we obtain the
stiffness matrix, referred to global coordinates, for each member of the framework.
In Section 6.3, we determined the internal force in a spring from the nodal displacements. Applying

similar reasoning to the framework member, we may write down an expression for the internal force
Sij in terms of the local coordinates. Thus,

Sij = AE

L
(uj − ui) (6.31)

Now,

uj = λuj + μvj

ui = λui+ μvi
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Hence,

uj − ui = λ(uj − ui) + μ(vj − vi)

Substituting in Eq. (6.31) and rewriting in matrix form, we have

Sij = AE

L

[
λ μ

ij

]{
uj − ui
vj − vi

}
(6.32)

Example 6.1
Determine the horizontal and vertical components of the deflection of node 2 and the forces in the
members of the pin-jointed framework that is shown in Fig. 6.4. The product AE is constant for all
members.

We see in this problem that nodes 1 and 3 are pinned to a fixed foundation and are therefore not
displaced. Hence, with the global coordinate system shown,

u1 = v1 = u3 = v3 = 0

The external forces are applied at node 2 such that Fx,2 = 0,Fy,2 = −W ; the nodal forces at 1 and 3 are
then unknown reactions.
The first step in the solution is to assemble the stiffnessmatrix for the complete framework bywriting

down the member stiffness matrices referred to the global coordinate system using Eq. (6.30). The

Fig. 6.4

Pin-jointed framework of Example 6.1.
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direction cosines λ and μ take different values for each of the three members, so remembering that the
angle θ is measured anticlockwise from the positive direction of the x axis, we have the following:

Member θ λ μ

1–2 0 1 0
1–3 90 0 1
2–3 135 −1/

√
2 1/

√
2

The member stiffness matrices are therefore

[K12]= AE

L

⎡
⎢⎢⎣
1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ [K13]= AE

L

⎡
⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦

[K23]= AE√
2L

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2

1
2 − 1

2 − 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦ (i)

The next stage is to add the member stiffness matrices to obtain the stiffness matrix for the complete
framework. Since there are six possible nodal forces producing six possible nodal displacements, the
complete stiffness matrix is of the order 6× 6. Although the addition is not difficult in this simple
problem, care must be taken, when solving more complex structures to ensure that the matrix elements
are placed in the correct position in the complete stiffness matrix. This may be achieved by expanding
each member stiffness matrix to the order of the complete stiffness matrix by inserting appropriate rows
and columns of zeros. Such a method is, however, time and space consuming. An alternative procedure
is suggested here. The complete stiffness matrix is of the form shown in Eq. (ii)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1
Fy,1
Fx,2
Fy,2
Fx,3
Fy,3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡
⎢⎣ k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤
⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ii)

The complete stiffness matrix has been divided into a number of submatrices in which [k11] is a 2×2
matrix relating the nodal forces Fx,1, Fy,1 to the nodal displacements u1, v1, and so on. It is a simple
matter to divide each member stiffness matrix into submatrices of the form [k11], as shown in Eqs. (iii).
All that remains is to insert each submatrix into its correct position in Eq. (ii), adding thematrix elements
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where they overlap; for example, the [k11] submatrix in Eq. (ii) receives contributions from [K12] and
[K13]. The complete stiffness matrix is then of the form shown in Eq. (iv). It is sometimes helpful,
when considering the stiffness matrix separately, to write the nodal displacement above the appropriate
column (see Eq. (iv)). We note that [K] is symmetrical, that all the diagonal terms are positive, and that
the sum of each row and column is zero

[K12]= AE

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
k11

0 0

−1 0
k12

0 0

−1 0
k21

0 0

1 0
k22

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[K13]= AE

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
k11

0 1

0 0
k13

0 −1
0 0
k31

0 −1

0 0
k33

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(iii)

[K23]= AE√
2L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
−1
2

k22

−1
2

1

2

−1
2

1

2
k23

1

2
−1
2

−1
2

1

2
k32

1

2
−1
2

1

2
−1
2

k33

−1
2

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fx,1
Fy,1
Fx,2
Fy,2
Fx,3
Fy,3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= AE

L

u1 v1 u2 v2 u3 v3⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0
0 1 0 0 0 −1

−1 0 1+ 1

2
√
2

− 1

2
√
2

− 1

2
√
2

1

2
√
2

0 0 − 1

2
√
2

1

2
√
2

1

2
√
2

− 1

2
√
2

0 0 − 1

2
√
2

1

2
√
2

1

2
√
2

− 1

2
√
2

0 −1 1

2
√
2

− 1

2
√
2

− 1

2
√
2
1+ 1

2
√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 = 0
v1 = 0
u2
v2

u3 = 0
v3 = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(iv)
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If we now delete rows and columns in the stiffness matrix corresponding to zero displacements, we
obtain the unknown nodal displacements u2 and v2 in terms of the applied loads Fx,2 (=0) and Fy,2
(=−W ). Thus,

{
Fx,2
Fy,2

}
= AE

L

⎡
⎢⎢⎣
1+ 1

2
√
2

− 1

2
√
2

− 1

2
√
2

1

2
√
2

⎤
⎥⎥⎦
{
u2
v2

}
(v)

Inverting Eq. (v) gives {
u2
v2

}
= L

AE

[
1 1
1 1+ 2√2

]{
Fx,2
Fy,2

}
(vi)

from which

u2 = L

AE
(Fx,2+Fy,2) = −WL

AE
(vii)

v2 = L

AE
[Fx,2+ (1+ 2√2)Fy,2]= −WL

AE
(1+ 2√2) (viii)

The reactions at nodes 1 and 3 are now obtained by substituting for u2 and v2 from Eq. (vi) into
Eq. (iv). Thus,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fx,1
Fy,1
Fx,3
Fy,3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0

0 0

− 1

2
√
2

1

2
√
2

1

2
√
2

− 1

2
√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[
1 1

1 1+ 2√2

]{
Fx,2
Fy,2

}

=

⎡
⎢⎢⎢⎣

−1 −1
0 0

0 1

0 −1

⎤
⎥⎥⎥⎦
{
Fx,2
Fy,2

}

giving

Fx,1 = −Fx,2−Fy,2 =W
Fy,1 = 0
Fx,3 = Fy,2 = −W
Fy,3 =W
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Finally, the forces in the members are found from Eqs. (6.32), (vii), and (viii)

S12 = AE

L
[1 0]

{
u2− u1
v2− v1

}
= −W (compression)

S13 = AE

L
[0 1]

{
u3− u1
v3− v1

}
= 0 (as expected)

S23 = AE√
2L

[
− 1√

2

1√
2

]{
u3− u2
v3− v2

}
= √

2W (tension)

6.5 APPLICATION TO STATICALLY INDETERMINATE FRAMEWORKS
The matrix method of solution described in the previous sections for spring and pin-jointed framework
assemblies is completely general and is therefore applicable to any structural problem. We observe that
at no stage in Example 6.1 did the question of the degree of indeterminacy of the framework arise. It
follows that problems involving statically indeterminate frameworks (and other structures) are solved
in an identical manner to that presented in Example 6.1, and the stiffness matrices for the redundant
members being included in the complete stiffness matrix as before.

6.6 MATRIX ANALYSIS OF SPACE FRAMES
The procedure for thematrix analysis of space frames is similar to that for plane pin-jointed frameworks.
The main difference lies in the transformation of the member stiffness matrices from local to global
coordinates, since, as we see from Fig. 6.5, axial nodal forces Fx,i and Fx, j have each now three global

Fig. 6.5

Local and global coordinate systems for a member in a pin-jointed space frame.
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componentsFx,i,Fy,i,Fz,i andFx, j,Fy, j,Fz, j, respectively. Themember stiffnessmatrix referred to global
coordinates is therefore of the order 6×6 so that [Kij] of Eq. (6.22) must be expanded to the same order
to allow for this. Hence,

[Kij]= AE

L

ūi v̄i w̄i ūj v̄j w̄j⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.33)

In Fig. 6.5, the member ij is of length L, cross-sectional area A, and modulus of elasticity E. Global
and local coordinate systems are designated as for the two-dimensional case. Further, we suppose that

θxx̄ = angle between x and x̄
θxȳ = angle between x and ȳ

...

θzȳ = angle between z and ȳ
...

Therefore, nodal forces referred to the two systems of axes are related as follows:

Fx = Fx cosθxx̄ +Fy cosθxȳ+Fz cosθxz̄
Fy = Fx cosθyx̄ +Fy cosθyȳ+Fz cosθyz̄
Fz = Fx cosθzx̄ +Fy cosθzȳ+Fz cosθzz̄

⎫⎪⎬
⎪⎭ (6.34)

Writing

λx̄ = cosθxx̄, λȳ = cosθxȳ, λz̄ = cosθxz̄
μx̄ = cosθyx̄, μȳ = cosθyȳ, μz̄ = cosθyz̄
νx̄ = cosθzx̄, νȳ = cosθzȳ, νz̄ = cosθzz̄

⎫⎪⎬
⎪⎭ (6.35)

we may express Eq. (6.34) for nodes i and j in matrix form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i
Fy,i
Fz,i
Fx, j
Fy, j
Fz, j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λx̄ μx̄ νx̄ 0 0 0

λȳ μȳ νȳ 0 0 0

λz̄ μz̄ νz̄ 0 0 0

0 0 0 λx̄ μx̄ νx̄

0 0 0 λȳ μȳ νȳ

0 0 0 λz̄ μz̄ νz̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i
Fy,i
Fz,i
Fx, j
Fy, j
Fz, j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.36)
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or in abbreviated form

{F} = [T ]{F}
The derivation of [Kij] for a member of a space frame proceeds on identical lines to that for the plane

frame member. Thus, as before

[Kij]= [T ]T[Kij][T ]
Substituting for [T ] and [Kij] from Eqs. (6.36) and (6.33) gives

[Kij]= AE

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2x̄ λx̄μx̄ λx̄νx̄ −λ2x̄ −λx̄μx̄ −λx̄νx̄

λx̄μx̄ μ2x̄ μx̄νx̄ −λx̄μx̄ −μ2x̄ −μx̄νx̄

λx̄νx̄ μx̄νx̄ ν2x̄ −λx̄νx̄ −μx̄νx̄ −ν2x̄

−λ2x̄ −λx̄μx̄ −λx̄νx̄ λ2x̄ λx̄μx̄ λx̄νx̄

−λx̄μx̄ −μ2x̄ −μx̄νx̄ λx̄μx̄ μ 2
x̄ μx̄νx̄

−λx̄νx̄ −μx̄νx̄ −ν2x̄ λx̄νx̄ μx̄νx̄ ν2x̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.37)

All the suffixes in Eq. (6.37) are x̄ so that we may rewrite the equation in simpler form, namely

[Kij]= AE

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2
... SYM

λμ μ2
...

λν μν ν2
...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−λ2 −λμ −λν

... λ2

−λμ −μ2 −μν
... λμ μ2

−λν −μν −ν2
... λν μν ν2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.38)

where λ, μ, and ν are the direction cosines between the x, y, z, and x̄ axes.
The complete stiffness matrix for a space frame is assembled from the member stiffness matrices in

a similar manner to that for the plane frame and the solution completed as before.

6.7 STIFFNESS MATRIX FOR A UNIFORM BEAM
Our discussion so far has been restricted to structures comprising members capable of resisting axial
loads only. Many structures, however, consist of beam assemblies in which the individual members
resist shear and bending forces, in addition to axial loads. We shall now derive the stiffness matrix for a
uniform beam and consider the solution of rigid-jointed frameworks formed by an assembly of beams
or beam elements as they are sometimes called.
Figure 6.6 shows a uniform beam ij of flexural rigidity EI and length L subjected to nodal forces

Fy,i,Fy, j and nodal momentsMi,Mj in the xy plane. The beam suffers nodal displacements and rotations
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Fig. 6.6

Forces and moments on a beam element.

vi, vj, and θi, θj. We do not include axial forces here, since their effects have already been determined
in our investigation of pin-jointed frameworks.
The stiffness matrix [Kij] may be built up by considering various deflected states for the

beam and superimposing the results, as we did initially for the spring assemblies shown in Figs. 6.1 and
6.2, or it may be written down directly from the well-known beam slope–deflection equations [Ref. 3].
We shall adopt the latter procedure. From slope–deflection theory, we have

Mi = −6EI
L2
vi+ 4EI

L
θi+ 6EI

L2
vj + 2EI

L
θj (6.39)

and

Mj = −6EI
L2
vi+ 2EI

L
θi+ 6EI

L2
vj + 4EI

L
θj (6.40)

Also, considering vertical equilibrium, we obtain

Fy, i+Fy, j = 0 (6.41)

and from moment equilibrium about node j, we have

Fy, iL+Mi+Mj = 0 (6.42)

Hence, the solution of Eqs. (6.39) through (6.42) gives

−Fy, i = Fy, j = −12EI
L3

vi+ 6EI

L2
θi+ 12EI

L3
vj + 6EI

L2
θj (6.43)

Expressing Eqs. (6.39), (6.40), and (6.43) in matrix form yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fy, i
Mi
Fy, j
Mj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭= EI

⎡
⎢⎢⎢⎣
12/L3 −6/L2 −12/L3 −6/L2
−6/L2 4/L 6/L2 2/L

−12/L3 6/L2 12/L3 6/L2

−6/L2 2/L 6/L2 4/L

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vi
θi

vj
θj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.44)
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which is of the form

{F} = [Kij]{δ}
where [Kij] is the stiffness matrix for the beam.
It is possible to write Eq. (6.44) in an alternative form such that the elements of [Kij] are pure

numbers. Thus, ⎧⎪⎪⎨
⎪⎪⎩
Fy,i
Mi/L
Fy, j
Mj/L

⎫⎪⎪⎬
⎪⎪⎭= EI

L3

⎡
⎢⎢⎣
12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
vi
θiL
vj
θjL

⎫⎪⎪⎬
⎪⎪⎭

This form of Eq. (6.44) is particularly useful in numerical calculations for an assemblage of beams in
which EI/L3 is constant.
Equation (6.44) is derived for a beamwhose axis is aligned with the x axis so that the stiffness matrix

defined by Eq. (6.44) is actually [Kij] the stiffness matrix referred to a local coordinate system. If the
beam is positioned in the xy plane with its axis arbitrarily inclined to the x axis, then the x and y axes
form a global coordinate system and it becomes necessary to transform Eq. (6.44) to allow for this. The
procedure is similar to that for the pin-jointed framework member of Section 6.4 in that [Kij] must be
expanded to allow for the fact that nodal displacements ūi and ūj, which are irrelevant for the beam in
local coordinates, have components ui, vi and uj,vj in global coordinates. Thus,

[Kij]= EI

ui vi θi uj vj θj⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 12/L3 −6/L2 0 −12/L3 −6/L2
0 −6/L2 4/L 0 6/L2 2/L

0 0 0 0 0 0

0 −12/L3 6/L2 0 12/L3 6/L2

0 −6/L2 2/L 0 6/L2 4/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.45)

We may deduce the transformation matrix [T ] from Eq. (6.24) if we remember that although u and v
transform in exactly the same way as in the case of a pin-jointed member, the rotations θ remain the
same in either local or global coordinates.
Hence,

[T ]=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ μ 0 0 0 0
−μ λ 0 0 0 0
0 0 1 0 0 0
0 0 0 λ μ 0
0 0 0 −μ λ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (6.46)

where λ and μ have previously been defined. Thus,

[Kij]= [T ]T[Kij][T ] (see Section 6.4)
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we have, from Eqs. (6.45) and (6.46),

[Kij]= EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12μ2/L3 SYM

−12λμ/L3 12λ2/L3

6μ/L2 −6λ/L2 4/L

−12μ2/L3 12λμ/L3 −6μ/L2 12μ2/L3

12λμ/L3 −12λ2/L3 6λ/L2 −12λμ/L3 12λ2/L3

6μ/L2 −6λ/L2 2/L 6μ/L2 6λ/L2 4λ/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.47)

Again, the stiffness matrix for the complete structure is assembled from the member stiffness matrices,
the boundary conditions are applied, and the resulting set of equations solved for the unknown nodal
displacements and forces.
The internal shear forces and bending moments in a beammay be obtained in terms of the calculated

nodal displacements. Thus, for a beam joining nodes i and j, we shall have obtained the unknown values
of vi, θi and vj, θj. The nodal forces Fy,i andMi are then obtained from Eq. (6.44) if the beam is aligned
with the x axis. Hence,

Fy,i = EI
(
12

L3
vi− 6

L2
θi− 12

L3
vj − 6

L2
θj

)

Mi = EI
(

− 6

L2
vi+ 4

L
θi+ 6

L2
vj + 2

L
θj

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.48)

Similar expressions are obtained for the forces at node j. From Fig. 6.6, we see that the shear force Sy
and bending moment M in the beam are given by

Sy = Fy,i
M = Fy,ix+Mi

}
(6.49)

Substituting Eq. (6.48) into Eq. (6.49) and expressing in matrix form yield

{
Sy
M

}
= EI

⎡
⎢⎢⎣

12

L3
− 6

L2
−12
L3

− 6

L2

12

L3
x− 6

L2
− 6

L2
x+ 4

L
−12
L3
x+ 6

L2
− 6

L2
x+ 2

L

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
vi
θi
vj
θj

⎫⎪⎪⎬
⎪⎪⎭ (6.50)

The matrix analysis of the beam in Fig. 6.6 is based on the condition that no external forces are
applied between the nodes. Obviously, in a practical case, a beam supports a variety of loads along
its length, and therefore, such beams must be idealized into a number of beam elements for which the
preceding condition holds. The idealization is accomplished by merely specifying nodes at points along
the beam such that any element lying between adjacent nodes carries, at the most, a uniform shear
and a linearly varying bending moment. For example, the beam of Fig. 6.7 would be idealized into
beam elements 1–2, 2–3, and 3–4 for which the unknown nodal displacements are v2,θ2,θ3,v4, and θ4
(v1=θ1=v3=0).
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Fig. 6.7

Idealization of a beam into beam elements.

Fig. 6.8

Idealization of a beam supporting a uniformly distributed load.

Fig. 6.9

Idealization of beams into beam elements.

Beams supporting distributed loads require special treatment in that the distributed load is replaced
by a series of statically equivalent point loads at a selected number of nodes. Clearly, the greater the
number of nodes chosen, the more accurate but more complicated and therefore time consuming will
be the analysis. Figure 6.8 shows a typical idealization of a beam supporting a uniformly distributed
load. Details of the analysis of such beams may be found in Martin [Ref. 4].
Many simple beam problems may be idealized into a combination of two beam elements and three

nodes. A few examples of such beams are shown in Fig. 6.9. If we therefore assemble a stiffness matrix
for the general case of a two beam element system, we may use it to solve a variety of problems simply
by inserting the appropriate loading and support conditions. Consider the assemblage of two beam
elements shown in Fig. 6.10. The stiffness matrices for the beam elements 1–2 and 2–3 are obtained
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Fig. 6.10

Assemblage of two beam elements.

from Eq. (6.44); thus,

[K12]= EIa

v1 θ1 v2 θ2⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12/L3a −6/L2a
k11

−6/L2a 4/La

−12/L3a −6/L2a
k12

6/L2a 2/La

−12/L3a 6/L2a
k21

−6/L2a 2/La

12/L3a 6/L2a
k22

6/L2a 4/La

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.51)

[K23]= EIb

v2 θ2 v3 θ3⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12/L3b −6/L2b
k22

−6/L2b 4/Lb

−12/L3b −6/L2b
k23

6/L2b 2/Lb

−12/L3b 6/L2b
k32

−6/L2b 2/Lb

12/L3b 6/L2b
k33

6/L2b 4/Lb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.52)

The complete stiffness matrix is formed by superimposing [K12] and [K23] as described in Example 6.1.
Hence,

[K]= E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12Ia
L3a

−6Ia
L2a

−12Ia
L3a

−6Ia
L2a

0 0

−6Ia
L2a

4Ia
La

6Ia
L2a

2Ia
La

0 0

−12Ia
L3a

6Ia
L2a

12

(
Ia
L3a

+ Ib
L3b

)
6

(
Ia
L2a

− Ib
L2b

)
−12Ib
L3b

−6Ib
L2b

−6Ia
L2a

2Ia
La

6

(
Ia
L2a

− Ib
L2b

)
4

(
Ia
La

+ Ib
Lb

)
6Ib
L2b

2Ib
Lb

0 0 −12Ib
L3b

6Ib
L2b

12Ib
L3b

6Ib
L2b

0 0 −6Ib
L2b

2Ib
Lb

6Ib
L2b

4Ib
Lb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.53)
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Example 6.2
Determine the unknown nodal displacements and forces in the beam shown in Fig. 6.11. The beam is
of uniform section throughout.

The beam may be idealized into two beam elements, 1–2 and 2–3. From Fig. 6.11, we see that
v1 = v3 = 0, Fy,2 = −W , M2 = +M. Therefore, eliminating rows and columns corresponding to zero
displacements from Eq. (6.53), we obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Fy,2 = −W
M2 =M
M1 = 0
M3 = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭= EI

⎡
⎢⎢⎢⎣
27/2L3 9/2L2 6/L2 −3/2L2
9/2L2 6/L 2/L 1/L

6/L2 2/L 4/L 0

−3/2L2 1/L 0 2/L

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v2
θ2

θ1

θ3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (i)

Equation (i) may be written such that the elements of [K] are pure numbers⎧⎪⎪⎨
⎪⎪⎩
Fy,2=−W
M2/L=M/L
M1/L=0
M3/L=0

⎫⎪⎪⎬
⎪⎪⎭= EI

2L3

⎡
⎢⎢⎣
27 9 12 −3
9 12 4 2
12 4 8 0
−3 2 0 4

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
v2
θ2L
θ1L
θ3L

⎫⎪⎪⎬
⎪⎪⎭ (ii)

Expanding Eq. (ii) by matrix multiplication, we have{−W
M/L

}
= EI

2L3

([
27 9
9 12

]{
v2
θ2L

}
+
[
12 −3
4 2

]{
θ1L
θ3L

})
(iii)

and {
0
0

}
= EI

2L3

([
12 4
−3 2

]{
v2
θ2L

}
+
[
8 0
0 4

]{
θ1L
θ3L

})
(iv)

Equation (iv) gives

{
θ1L
θ3L

}
=
⎡
⎣− 3

2 − 1
2

− 3
4 − 1

2

⎤
⎦{ v2

θ2L

}
(v)

Fig. 6.11

Beam of Example 6.2.
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Substituting Eq. (v) into Eq. (iii), we obtain{
v2
θ2L

}
= L3

9EI

[−4 −2
−2 3

]{−W
M/L

}
(vi)

from which the unknown displacements at node 2 are

v2 = −4
9

WL3

EI
− 2

9

ML2

EI

θ2 = 2

9

WL2

EI
+ 1

3

ML

EI

In addition, from Eq. (v) we find that

θ1 = 5

9

WL2

EI
+ 1

6

ML

EI

θ3 = −4
9

WL2

EI
− 1

3

ML

EI

It should be noted that the solution has been obtained by inverting two 2×2 matrices rather than the
4×4 matrix of Eq. (ii). This simplification has been brought about by the fact that M1=M3=0.
The internal shear forces and bending moments can now be found using Eq. (6.50). For the beam

element 1–2, we have

Sy,12 = EI
(
12

L3
v1− 6

L2
θ1− 12

L3
v2− 6

L2
θ2

)
or

Sy,12 = 2

3
W − 1

3

M

L

and

M12 = EI
[(
12

L3
x− 6

L2

)
v1+

(
− 6

L2
x+ 4

L

)
θ1

+
(

−12
L3
x+ 6

L2

)
v2+

(
− 6

L2
x+ 2

L

)
θ2

]

which reduces to

M12 =
(
2

3
W − 1

3

M

L

)
x
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6.8 FINITE ELEMENT METHOD FOR CONTINUUM STRUCTURES
In the previous sections, we have discussed the matrix method of solution of structures composed of
elements connected only at nodal points. For skeletal structures consisting of arrangements of beams,
these nodal points fall naturally at joints and at positions of concentrated loading. Continuum structures,
such as flat plates, aircraft skins, shells, and so on, do not possess such natural subdivisions and must
therefore be artificially idealized into a number of elements before matrix methods can be used. These
finite elements, as they are known, may be two- or three-dimensional, but the most commonly used are
two-dimensional triangular and quadrilateral shaped elements. The idealization may be carried out in
any number of different ways depending on such factors as the type of problem, the accuracy of the
solution required, and the time and money available. For example, a coarse idealization involving a
small number of large elements would provide a comparatively rapid but very approximate solution,
while a fine idealization of small elements would produce more accurate results but would take longer
and consequently cost more. Frequently, graded meshes are used in which small elements are placed
in regions where high stress concentrations are expected—for example, around cut-outs and loading
points. The principle is illustrated in Fig. 6.12 where a graded system of triangular elements is used to
examine the stress concentration around a circular hole in a flat plate.
Although the elements are connected at an infinite number of points around their boundaries, it is

assumed that they are only interconnected at their corners or nodes. Thus, compatibility of displacement
is only ensured at the nodal points. However, in the finite element method, a displacement pattern is
chosen for each element which may satisfy some, if not all, of the compatibility requirements along the
sides of adjacent elements.
Since we are using matrix methods of solution, we are concerned initially with the determination

of nodal forces and displacements. Thus, the system of loads on the structure must be replaced by an
equivalent system of nodal forces. Where these loads are concentrated, the elements are chosen such
that a node occurs at the point of application of the load. In the case of distributed loads, equivalent
nodal concentrated loads must be calculated [Ref. 4].

Fig. 6.12

Finite element idealization of a flat plate with a central hole.
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The solution procedure is identical in outline to that described in the previous sections for skeletal
structures; the differences lie in the idealization of the structure into finite elements and the calculation
of the stiffness matrix for each element. The latter procedure, which in general terms is applicable to
all finite elements, may be specified in a number of distinct steps. We shall illustrate the method by
establishing the stiffness matrix for the simple one-dimensional beam element of Fig. 6.6 for which we
have already derived the stiffness matrix using slope–deflection.

6.8.1 Stiffness Matrix for a Beam Element
The first step is to choose a suitable coordinate and node numbering system for the element and define
its nodal displacement vector {δe} and nodal load vector {Fe}. Use is made here of the superscript e to
denote element vectors, since, in general, a finite element possesses more than two nodes. Again, we
are not concerned with axial or shear displacements so that for the beam element of Fig. 6.6, we have

{δe} =

⎧⎪⎪⎨
⎪⎪⎩
vi
θi
vj
θj

⎫⎪⎪⎬
⎪⎪⎭ {Fe} =

⎧⎪⎪⎨
⎪⎪⎩
Fy,i
Mi
Fy, j
Mj

⎫⎪⎪⎬
⎪⎪⎭

Since each of these vectors contains four terms, the element stiffness matrix [Ke] will be of order 4×4.
In the second step, we select a displacement function which uniquely defines the displacement of

all points in the beam element in terms of the nodal displacements. This displacement function may
be taken as a polynomial which must include four arbitrary constants corresponding to the four nodal
degrees of freedom of the element. Thus,

v(x) = α1+ α2x+ α3x
2+ α4x

3 (6.54)

Equation (6.54) is of the same form as that derived from elementary bending theory for a beam subjected
to concentrated loads and moments and may be written in matrix form as

{v(x)} =
[
1 x x2 x3

]⎧⎪⎪⎨
⎪⎪⎩

α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭

or in abbreviated form as

{v(x)} = [ f (x)]{α} (6.55)

The rotation θ at any section of the beam element is given by ∂v/∂x; therefore,

θ = α2+ 2α3x+ 3α4x2 (6.56)
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From Eqs. (6.54) and (6.56), we can write down expressions for the nodal displacements vi,θi and vj,θj
at x=0 and x=L, respectively. Hence,

vi = α1
θi = α2
vj = α1+ α2L+ α3L2+ α4L3

θj = α2+ 2α3L+ 3α4L2

⎫⎪⎪⎬
⎪⎪⎭ (6.57)

Writing Eqs. (6.57) in matrix form gives⎧⎪⎪⎨
⎪⎪⎩
vi
θi
vj
θj

⎫⎪⎪⎬
⎪⎪⎭=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ (6.58)

or

{δe} = [A]{α} (6.59)

The third step follows directly from Eqs. (6.58) and (6.55) in that we express the displacement at
any point in the beam element in terms of the nodal displacements. Using Eq. (6.59), we obtain

{α} = [A−1]{δe} (6.60)

Substituting in Eq. (6.55) gives

{v(x)} = [ f (x)][A−1]{δe} (6.61)

where [A−1] is obtained by inverting [A] in Eq. (6.58) and may be shown to be given by

[A−1]=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−3/L2 −2/L 3/L2 −1/L
2/L3 1/L2 −2/L3 1/L2

⎤
⎥⎥⎦ (6.62)

In step four, we relate the strain {ε(x)} at any point x in the element to the displacement {v(x)} and
hence to the nodal displacements {δe}. Since we are concerned here with bending deformations only,
we may represent the strain by the curvature ∂2v/∂x2. Hence, from Eq. (6.54),

∂2v

∂x2
= 2α3+ 6α4x (6.63)

or in matrix form

{ε} = [0 0 2 6x]

⎧⎪⎪⎨
⎪⎪⎩

α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ (6.64)
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which we write as

{ε} = [C]{α} (6.65)

Substituting for {α} in Eq. (6.65) from Eq. (6.60), we have

{ε} = [C][A−1]{δe} (6.66)

Step five relates the internal stresses in the element to the strain {ε} and hence, using Eq. (6.66), to
the nodal displacements {δe}. In our beam element, the stress distribution at any section depends entirely
on the value of the bending moment M at that section. Thus, we may represent a “state of stress” {σ }
at any section by the bending moment M, which, from simple beam theory, is given by

M = EI ∂
2v

∂x2

or

{σ } = [EI]{ε} (6.67)

which we write as

{σ } = [D]{ε} (6.68)

The matrix [D] in Eq. (6.68) is the “elasticity” matrix relating “stress” and “strain.” In this case, [D]
consists of a single term, the flexural rigidity EI of the beam. Generally, however, [D] is of a higher
order. If we now substitute for {ε} in Eq. (6.68) from Eq. (6.66), we obtain the “stress” in terms of the
nodal displacements, that is,

{σ } = [D][C][A−1]{δe} (6.69)

The element stiffness matrix is finally obtained in step six in which we replace the internal “stresses”
{σ } by a statically equivalent nodal load system {Fe}, thereby relating nodal loads to nodal displacements
(from Eq. (6.69)) and defining the element stiffness matrix [Ke]. This is achieved by using the principle
of the stationary value of the total potential energy of the beam (see Section 5.8) which comprises the
internal strain energy U and the potential energy V of the nodal loads. Thus,

U +V = 1

2

∫
vol

{ε}T{σ }d(vol) −{δe}T{Fe} (6.70)

Substituting in Eq. (6.70) for {ε} from Eq. (6.66) and {σ} from Eq. (6.69), we have

U +V = 1

2

∫
vol

{δe}T[A−1]T[C]T[D][C][A−1]{δe}d(vol)−{δe}T{Fe} (6.71)
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The total potential energy of the beam has a stationary value with respect to the nodal displacements
{δe}T; hence, from Eq. (6.71),

∂(U +V)

∂{δe}T =
∫
vol

[A−1]T[C]T[D][C][A−1]{δe}d(vol)−{Fe} = 0 (6.72)

from which

{Fe} =
⎡
⎣ ∫
vol

[C]T[A−1]T[D][C][A−1]d(vol)

⎤
⎦{δe} (6.73)

or writing [C][A−1] as [B] we obtain

{Fe} =
⎡
⎣ ∫
vol

[B]T[D][B]d(vol)

⎤
⎦{δe} (6.74)

from which the element stiffness matrix is clearly

[Ke]=
⎡
⎣ ∫
vol

[B]T[D][B]d(vol)

⎤
⎦ (6.75)

From Eqs. (6.62) and (6.64), we have

[B]= [C][A−1]= [0 0 2 6x]

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L
2/L3 1/L2 −2/L3 1/L2

⎤
⎥⎥⎥⎦

or

[B]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 6

L2
+ 12x

L3

− 4
L

+ 6x

L2

6

L2
− 12x

L3

− 2
L

+ 6x

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.76)
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Hence,

[Ke]=
L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 6

L2
+ 12x

L3

− 4
L

+ 6x

L2

6

L2
− 12x

L3

− 2
L

+ 6x

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[EI]

[
− 6

L2
+ 12x

L3
− 4

L
+ 6x

L2
6

L2
− 12x

L3
− 2

L
+ 6x

L2

]
dx

which gives

[Ke]= EI

L3

⎡
⎢⎢⎣
12 −6L −12 −6L

−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤
⎥⎥⎦ (6.77)

Equation (6.77) is identical to the stiffness matrix (see Eq. (6.44)) for the uniform beam of Fig. 6.6.
Finally, in step seven, we relate the internal “stresses,” {σ}, in the element to the nodal displacements

{δe}. This has in fact been achieved to some extent in Eq. (6.69), namely

{σ } = [D][C][A−1]{δe}
or, from the preceding,

{σ } = [D][B]{δe} (6.78)

Equation (6.78) is usually written as

{σ } = [H]{δe} (6.79)

in which [H]= [D][B] is the stress–displacement matrix. For this particular beam element, [D]= EI
and [B] is defined in Eq. (6.76). Thus,

[H]= EI
[
− 6

L2
+ 12x

L3
− 4
L

+ 6x

L2
6

L2
− 12x

L3
− 2
L

+ 6x

L2

]
(6.80)

6.8.2 Stiffness Matrix for a Triangular Finite Element
Triangular finite elements are used in the solution of plane stress and plane strain problems. Their
advantage over other shaped elements lies in their ability to represent irregular shapes and boundaries
with relative simplicity.
In the derivation of the stiffness matrix, we shall adopt the step-by-step procedure of the previ-

ous example. Initially, therefore, we choose a suitable coordinate and node numbering system for the
element and define its nodal displacement and nodal force vectors. Figure 6.13 shows a triangular ele-
ment referred to axes Oxy and having nodes i, j, and k lettered counterclockwise. It may be shown
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Fig. 6.13

Triangular element for plane elasticity problems.

that the inverse of the [A] matrix for a triangular element contains terms giving the actual area of the
element; this area is positive if the preceding node lettering or numbering system is adopted. The ele-
ment is to be used for plane elasticity problems and has therefore two degrees of freedom per node,
giving a total of six degrees of freedom for the element, which results in a 6×6 element stiffness
matrix [Ke]. The nodal forces and displacements are shown, and the complete displacement and force
vectors are

{δe} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

{Fe} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i
Fy,i
Fx, j
Fy, j
Fx,k
Fy,k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.81)

We now select a displacement function which must satisfy the boundary conditions of the element—
that is, the condition that each node possesses two degrees of freedom. Generally, for computational
purposes, a polynomial is preferable to, say, a trigonometric series, since the terms in a polynomial
can be calculated much more rapidly by a digital computer. Furthermore, the total number of degrees
of freedom is six so that only six coefficients in the polynomial can be obtained. Suppose that the
displacement function is

u(x,y) = α1+ α2x+ α3y

v(x,y) = α4+ α5x+ α6y

}
(6.82)

The constant terms, α1 and α4, are required to represent any in-plane rigid bodymotion— that is, motion
without strain—while the linear terms enable states of constant strain to be specified; Eqs. (6.82) ensure
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compatibility of displacement along the edges of adjacent elements. Writing Eqs. (6.82) in matrix form
gives

{
u(x,y)
v(x,y)

}
=
[
1 x y 0 0 0
0 0 0 1 x y

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.83)

Comparing Eq. (6.83) with Eq. (6.55), we see that it is of the form{
u(x,y)
v(x,y)

}
= [ f (x,y)]{α} (6.84)

Substituting values of displacement and coordinates at each node in Eq. (6.84), we have for node i{
ui
vi

}
=
[
1 xi yi 0 0 0
0 0 0 1 xi yi

]
{α}

Similar expressions are obtained for nodes j and k so that for the complete element we obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 xi yi 0 0 0
0 0 0 1 xi yi
1 xj yj 0 0 0
0 0 0 1 xj yj
1 xk yk 0 0 0
0 0 0 1 xk yk

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.85)

From Eq. (6.81) and by comparing with Eqs. (6.58) and (6.59), we see that Eq. (6.85) takes the form

{δe} = [A]{α}
Hence (step 3) we obtain

{α} = [A−1]{δe} (compare with Eq. (6.60))

The inversion of [A], defined in Eq. (6.85), may be achieved algebraically as illustrated in Example
6.3. Alternatively, the inversion may be carried out numerically for a particular element by computer.
Substituting for {α} from the preceding into Eq. (6.84) gives{

u(x,y)
v(x,y)

}
= [ f (x,y)][A−1]{δe} (6.86)

(compare with Eq. (6.61)).
The strains in the element are

{ε} =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ (6.87)
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From Eqs. (1.18) and (1.20), we see that

εx = ∂u

∂x
εy = ∂v

∂y
γxy = ∂u

∂y
+ ∂v

∂x
(6.88)

Substituting for u and v in Eqs. (6.88) from Eqs. (6.82) gives

εx = α2

εy = α6

γxy = α3+ α5

or in matrix form

{ε} =
⎡
⎣0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.89)

which is of the form

{ε} = [C]{α} (see Eqs. (6.64) and (6.65))

Substituting for {α}(= [A−1]{δe}) we obtain
{ε} = [C][A−1]{δe} (compare with Eq. (6.66))

or

{ε} = [B]{δe} (see Eq. (6.76))

where [C] is defined in Eq. (6.89).
In step five, we relate the internal stresses {σ } to the strain {ε} and hence, using step four, to the

nodal displacements {δe}. For plane stress problems,

{σ } =
⎧⎨
⎩

σx
σy
τxy

⎫⎬
⎭ (6.90)

and

εx = σx

E
− νσy

E

εy = σy

E
− νσx

E

γxy= τxy

G
= 2(1+ ν)

E
τxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(see Chapter 1)
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Thus, in matrix form,

{ε} =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭= 1

E

⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2(1+ ν)

⎤
⎦
⎧⎨
⎩

σx
σy
τxy

⎫⎬
⎭ (6.91)

It may be shown that (see Chapter 1)

{σ } =
⎧⎨
⎩

σx
σy
τxy

⎫⎬
⎭= E

1− ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1

2 (1− ν)

⎤
⎦
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ (6.92)

which has the form of Eq. (6.68), that is,

{σ } = [D]{ε}
Substituting for {ε} in terms of the nodal displacements {δe}, we obtain

{σ } = [D][B]{δe} (see Eq. (6.69))

In the case of plane strain, the elasticity matrix [D] takes a different form to that defined in Eq. (6.92).
For this type of problem,

εx = σx

E
− νσy

E
− νσz

E

εy = σy

E
− νσx

E
− νσz

E

εz = σz

E
− νσx

E
− νσy

E
= 0

γxy = τxy

G
= 2(1+ ν)

E
τxy

Eliminating σz and solving for σx,σy, and τxy give

{σ } =
⎧⎨
⎩

σx
σy
τxy

⎫⎬
⎭= E(1− ν)

(1+ ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎣

1
ν

1− ν
0

ν

1− ν
1 0

0 0
(1− 2ν)

2(1− ν)

⎤
⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ (6.93)

which again takes the form

{σ } = [D]{ε}
Step six, in which the internal stresses {σ } are replaced by the statically equivalent nodal forces

{Fe}, proceeds in an identical manner to that described for the beam element. Thus,

{Fe} =
⎡
⎣ ∫
vol

[B]T[D][B]d(vol)

⎤
⎦{δe}
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as in Eq. (6.74), from which

[Ke]=
⎡
⎣ ∫
vol

[B]T[D][B]d(vol)

⎤
⎦

In this expression [B]= [C][A−1], where [A] is defined in Eq. (6.85) and [C] in Eq. (6.89). The elasticity
matrix [D] is defined in Eq. (6.92) for plane stress problems or in Eq. (6.93) for plane strain problems.
We note that the [C], [A] (therefore [B]), and [D] matrices contain only constant terms andmay therefore
be taken outside the integration in the expression for [Ke], leaving only

∫
d(vol), which is simply the

area A, of the triangle times its thickness t. Thus,

[Ke]= [[B]T[D][B]At] (6.94)

Finally, the element stresses follow from Eq. (6.79), that is,

{σ } = [H]{δe}
where [H]= [D][B] and [D] and [B] have previously been defined. It is usually found convenient to plot
the stresses at the centroid of the element.
Of all the finite elements in use, the triangular element is probably the most versatile. It may

be used to solve a variety of problems ranging from two-dimensional flat plate structures to three-
dimensional folded plates and shells. For three-dimensional applications, the element stiffness matrix
[Ke] is transformed from an in-plane xy coordinate system to a three-dimensional system of global
coordinates by the use of a transformation matrix similar to those developed for the matrix analysis of
skeletal structures. In addition to the preceding, triangular elements may be adapted for use in plate
flexure problems and for the analysis of bodies of revolution.

Example 6.3
A constant strain triangular element has corners 1(0, 0), 2(4, 0), and 3(2, 2) referred to a Cartesian Oxy
axes system and is 1 unit thick. If the elasticity matrix [D] has elements D11 = D22=a, D12=D21=b,
D13=D23=D31=D32=0, and D33=c, derive the stiffness matrix for the element.
From Eq. (6.82),

u1 = α1+ α2(0) + α3(0)

that is,

u1 = α1 (i)

u2 = α1+ α2(4) + α3(0)

that is,

u2 = α1+ 4α2 (ii)

u3 = α1+ α2(2) + α3(2)
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that is,

u3 = α1+ 2α2+ 2α3 (iii)

From Eq. (i),

α1 = u1 (iv)

and from Eqs. (ii) and (iv),

α2 = u2− u1
4

(v)

Then, from Eqs. (iii) to (v),

α3 = 2u3− u1− u2
4

(vi)

Substituting for α1, α2, and α3 in the first of Eqs. (6.82) gives

u= u1+
(
u2− u1
4

)
x+

(
2u3− u1− u2

4

)
y

or

u=
(
1− x

4
− y

4

)
u1+

(x
4

− y

4

)
u2+ y

2
u3 (vii)

Similarly,

v=
(
1− x

4
− y

4

)
v1+

(x
4

− y

4

)
v2+ y

2
v3 (viii)

Now from Eq. (6.88),

εx = ∂u

∂x
= −u1

4
+ u2
4

εy = ∂v

∂y
= −v1

4
− v2
4

+ v3
2

and

γxy = ∂u

∂y
+ ∂v

∂x
= −u1

4
− u2
4

− v1
4

+ v2
4

Hence,

[B]{δe} =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦= 1

4

⎡
⎣−1 0 1 0 0 0
0 −1 0 −1 0 2

−1 −1 −1 1 2 0

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(ix)
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Also,

[D]=
⎡
⎣a b 0
b a 0
0 0 c

⎤
⎦

Hence,

[D][B]= 1

4

⎡
⎣−a −b a −b 0 2b

−b −a b −a 0 2a
−c −c −c c 2c 0

⎤
⎦

and

[B]T[D][B]= 1

16

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a+ c b+ c −a+ c b− c −2c −2b
b+ c a+ c −b+ c a− c −2c −2a

−a+ c −b+ c a+ c −b− c −2c 2b
b− c a− c −b− c a+ c 2c −2a
−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Then, from Eq. (6.94),

[Ke]= 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a+ c b+ c −a+ c b− c −2c −2b
b+ c a+ c −b+ c a− c −2c −2a

−a+ c −b+ c a+ c −b− c −2c 2b
b− c a− c −b− c a+ c 2c −2a
−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

6.8.3 Stiffness Matrix for a Quadrilateral Element
Quadrilateral elements are frequently used in combinationwith triangular elements to build up particular
geometrical shapes. Figure 6.14 shows a quadrilateral element referred to axes Oxy and having corner
nodes, i, j,k, and l; the nodal forces and displacements are also shown, and the displacement and force
vectors are

{δe} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk
ul
vl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{Fe} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i
Fy,i
Fx, j
Fy, j
Fx,k
Fy,k
Fx,l
Fy,l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.95)



206 CHAPTER 6 Matrix Methods

Fig. 6.14

Quadrilateral element subjected to nodal in-plane forces and displacements.

As in the case of the triangular element, we select a displacement function which satisfies the total of
eight degrees of freedom of the nodes of the element; again, this displacement function will be in the
form of a polynomial with a maximum of eight coefficients. Thus,

u(x,y) = α1+ α2x+ α3y+ α4xy
v(x,y) = α5+ α6x+ α7y+ α8xy

}
(6.96)

The constant terms, α1 and α5, are required, as before, to represent the in-plane rigid body motion of the
element, while the two pairs of linear terms enable states of constant strain to be represented throughout
the element. Further, the inclusion of the xy terms results in both u(x,y) and v(x,y) displacements having
the same algebraic form so that the element behaves in exactly the same way in the x direction as it does
in the y direction.
Writing Eqs. (6.96) in matrix form gives

{
u(x,y)
v(x,y)

}
=
[
1 x y xy 0 0 0 0
0 0 0 0 1 x y xy

]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.97)
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or {
u(x,y)
v(x,y)

}
= [ f (x,y)]{α} (6.98)

Now, substituting the coordinates and values of displacement at each node, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk
ul
vl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xi yi xiyi 0 0 0 0
0 0 0 0 1 xi yi xiyi
1 xj yj xjyj 0 0 0 0
0 0 0 0 1 xj yj xjyj
1 xk yk xkyk 0 0 0 0
0 0 0 0 1 xk yk xkyk
1 xl yl xlyl 0 0 0 0
0 0 0 0 1 xl yl xlyl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.99)

which is of the form

{δe} = [A]{α}
Then,

{α} = [A−1]{δe} (6.100)

The inversion of [A] is illustrated in Example 6.4 but, as in the case of the triangular element, is most
easily carried out by means of a computer. The remaining analysis is identical to that for the triangular
element except that the {ε}–{α} relationship (see Eq. (6.89)) becomes

{ε} =
⎡
⎣0 1 0 y 0 0 0 0
0 0 0 0 0 0 1 x
0 0 1 x 0 1 0 y

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.101)

Example 6.4
A rectangular element used in a plane stress analysis has corners whose coordinates (in meters), referred
to an Oxy axes system, are 1(−2,−1), 2(2,−1), 3(2, 1), and 4(−2, 1); the displacements (also in meters)
of the corners were

u1 = 0.001, u2 = 0.003, u3 = −0.003, u4 = 0
v1 = −0.004, v2 = −0.002, v3 = 0.001, v4 = 0.001
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If Young’s modulus E=200000N/mm2 and Poisson’s ratio ν =0.3, calculate the stresses at the center
of the element.

From the first of Eqs. (6.96),

u1 = α1− 2α2− α3+ 2α4 = 0.001 (i)

u2 = α1+ 2α2− α3− 2α4 = 0.003 (ii)

u3 = α1+ 2α2+ α3+ 2α4 = −0.003 (iii)

u4 = α1− 2α2+ α3− 2α4 = 0 (iv)

Subtracting Eq. (ii) from Eq. (i),

α2− α4 = 0.0005 (v)

Now subtracting Eq. (iv) from Eq. (iii),

α2+ α4 = −0.00075 (vi)

Then subtracting Eq. (vi) from Eq. (v),

α4 = −0.000625 (vii)

so from either of Eq. (v) or of Eq. (vi)

α2 = −0.000125 (viii)

Adding Eqs. (i) and (ii),

α1− α3 = 0.002 (ix)

Adding Eqs. (iii) and (iv),

α1+ α3 = −0.0015 (x)

Then adding Eqs. (ix) and (x),

α1 = 0.00025 (xi)

and from either of Eq. (ix) or of Eq. (x)

α3 = −0.00175 (xii)

The second of Eqs. (6.96) is used to determine α5, α6, α7, α8 in an identical manner to the preceding.
Thus,

α5 = −0.001
α6 = 0.00025
α7 = 0.002
α8 = −0.00025
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Now, substituting for α1, α2, . . . ,α8 in Eqs. (6.96),

ui = 0.00025− 0.000125x− 0.00175y− 0.000625xy
and

vi = −0.001+ 0.00025x+ 0.002y− 0.00025xy
Then, from Eqs. (6.88),

εx = ∂u

∂x
= −0.000125− 0.000625y

εy = ∂v

∂y
= 0.002− 0.00025x

γxy = ∂u

∂y
+ ∂v

∂x
= −0.0015− 0.000625x− 0.00025y

Therefore, at the center of the element (x = 0, y= 0),
εx = −0.000125
εy = 0.002

γxy = −0.0015
so that from Eqs. (6.92),

σx = E

1− ν 2
(εx + νεy) = 200000

1− 0.32 (−0.000125+ (0.3× 0.002))

that is,

σx = 104.4N/mm2

σy = E

1− ν 2
(εy+ νεx) = 200000

1− 0.32 (0.002+ (0.3× 0.000125))

that is,

σy = 431.3N/mm2

and

τxy = E

1− ν 2
× 1

2
(1− ν)γxy = E

2(1+ ν)
γxy

Thus,

τxy = 200000

2(1+ 0.3) × (−0.0015)
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Fig. 6.15

Tetrahedron and rectangular prism finite elements for three-dimensional problems.

that is,

τxy = −115.4N/mm2

The application of the finite element method to three-dimensional solid bodies is a straightforward
extension of the analysis of two-dimensional structures. The basic three-dimensional elements are the
tetrahedron and the rectangular prism, both shown in Fig. 6.15. The tetrahedron has four nodes each
possessing three degrees of freedom, a total of 12 for the element, while the prism has 8 nodes and
therefore a total of 24 degrees of freedom. Displacement functions for each element require polynomials
in x,y, and z; for the tetrahedron, the displacement function is of the first degree with 12 constant
coefficients, while that for the prism may be of a higher order to accommodate the 24 degrees of
freedom.
Adevelopment in the solution of three-dimensional problems has been the introduction of curvilinear

coordinates. This enables the tetrahedron and prism to be distorted into arbitrary shapes that are better
suited for fitting actual boundaries. Formore detailed discussions of the finite elementmethod, reference
should bemade to thework of Jenkins [Ref. 5], Zienkiewicz andCheung [Ref. 6], and themany research
papers published on the method.
New elements and new applications of the finite element method are still being developed, some of

which lie outside the field of structural analysis. These fields include soil mechanics, heat transfer, fluid
and seepage flow, magnetism, and electricity.
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Problems
P.6.1 Figure P.6.1 shows a square symmetrical pin-jointed truss 1234, pinned to rigid supports at 2 and 4 and
loaded with a vertical load at 1. The axial rigidity EA is the same for all members.

Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve for all the internal member
forces and support reactions.

Ans. v1 = −PL/√2AE, v3 = −0.293PL/AE, S12 = P/2= S14,
S23 = −0.207P = S43, S13 = 0.293P
Fx,2 = −Fx,4 = 0.207P, Fy,2 = Fy,4 = P/2.

Fig. P.6.1
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P.6.2 Use the stiffness method to find the ratio H/P for which the displacement of node 4 of the plane pin-jointed
frame shown loaded in Fig. P.6.2 is zero, and for that case give the displacements of nodes 2 and 3.

All members have equal axial rigidity EA.

Ans. H/P=0.449, v2=−4Pl/(9+2√3)AE,
v3=−6PL/(9+2√3)AE.

Fig. P.6.2

P.6.3 Form the matrices required to solve completely the plane truss shown in Fig. P.6.3 and determine the force
in member 24. All members have equal axial rigidity.

Ans. S24=0.

Fig. P.6.3

P.6.4 The symmetrical plane rigid-jointed frame 1234567, as shown in Fig. P.6.4, is fixed to rigid supports at
1 and 5 and supported by rollers inclined at 45◦ to the horizontal at nodes 3 and 7. It carries a vertical point load
P at node 4 and a uniformly distributed load w per unit length on the span 26. Assuming the same flexural
rigidity EI for all members, set up the stiffness equations which, when solved, give the nodal displacements of the
frame.
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Fig. P.6.4

Explain how the member forces can be obtained.

P.6.5 The frame shown in Fig. P.6.5 has the planes xz and yz as planes of symmetry. The nodal coordinates of
one-quarter of the frame are given in Table P.6.5(i).

In this structure, the deformation of each member is due to a single effect, this being axial, bending, or torsional.
The mode of deformation of each member is given in Table P.6.5(ii), together with the relevant rigidity.

Fig. P.6.5

Table P.6.5(i)

Node x y z

2 0 0 0

3 L 0 0

7 L 0.8L 0

9 L 0 L

Table P.6.5(ii)

Effect

Member Axial Bending Torsional

23 – EI –
37 – – GJ=0.8EI
29 EA=6√2 EI

L2
– –
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Use the direct stiffness method to find all the displacements and hence calculate the forces in all the members.
For member 123 plot the shear force and bending moment diagrams.

Briefly outline the sequence of operations in a typical computer program suitable for linear frame analysis.

Ans. S29=S28=
√
2P/6 (tension)

M3=−M1=PL/9 (hogging), M2=2PL/9(sagging)
SF12=−SF23=P/3

Twisting moment in 37, PL/18 (anticlockwise).

P.6.6 Given that the force–displacement (stiffness) relationship for the beam element shown in Fig. P.6.6(a) may
be expressed in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fy,1

M1/L

Fy,2

M2/L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= EI

L3

⎡
⎢⎢⎢⎢⎢⎣
12 −6 −12 −6
−6 4 6 2

−12 6 12 6

−6 2 6 4

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1

θ1L

v2

θ2L

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Obtain the force–displacement (stiffness) relationship for the variable section beam (Fig. P.6.6(b)), composed
of elements 12, 23, and 34.

Such a beam is loaded and supported symmetrically as shown in Fig. P.6.6(c). Both ends are rigidly fixed, and
the ties FB, CH have a cross-sectional area a1, and the ties EB, CG have a cross-sectional area a2. Calculate the
deflections under the loads, the forces in the ties, and all other information necessary for sketching the bending
moment and shear force diagrams for the beam.

Neglect axial effects in the beam. The ties are made from the same material as the beam.

Ans. vB = vC = −5PL3/144EI , θB = −θC = PL2/24EI ,
S1 = 2P/3, S2 = √

2P/3,

Fy,A = P/3, MA = −PL/4.
P.6.7 The symmetrical rigid-jointed grillage shown in Fig. P.6.7 is encastré at 6, 7, 8, and 9 and rests on simple
supports at 1, 2, 4, and 5. It is loaded with a vertical point load P at 3.

Use the stiffness method to find the displacements of the structure and hence calculate the support reactions
and the forces in all the members. Plot the bending moment diagram for 123. All members have the same section
properties and GJ=0.8EI.
Ans. Fy,1 = Fy,5 = −P/16

Fy,2 = Fy,4 = 9P/16

M21 =M45 = −Pl/16 (hogging)
M23 =M43 = −Pl/12 (hogging)

Twisting moment in 62, 82, 74, and 94 is Pl/96.

P.6.8 It is required to formulate the stiffness of a triangular element 123 with coordinates (0, 0), (a, 0), and
(0, a), respectively, to be used for “plane stress” problems.
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Fig. P.6.6

(a) Form the [B] matrix.
(b) Obtain the stiffness matrix [Ke].

Why, in general, is a finite element solution not an exact solution?

P.6.9 It is required to form the stiffness matrix of a tri angular element 123 for use in stress analysis problems.
The coordinates of the element are (1, 1), (2, 1), and (2, 2), respectively.

(a) Assume a suitable displacement field explaining the reasons for your choice.
(b) Form the [B] matrix.
(c) Form the matrix which gives, when multiplied by the element nodal displacements, the stresses in the

element. Assume a general [D] matrix.
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Fig. P.6.7

P.6.10 It is required to form the stiffness matrix for a rectangular element of side 2a×2b and thickness t for use
in “plane stress” problems.

(a) Assume a suitable displacement field.
(b) Form the [C] matrix.
(c) Obtain

∫
vol[C]

T[D][C] dV .

Note that the stiffness matrix may be expressed as

[Ke]= [A−1]T
⎡
⎣∫
vol

[C]T[D][C]dV

⎤
⎦ [A−1]

P.6.11 A square element 1234, whose corners have coordinates x,y (in meters) of (−1, −1), (1, −1), (1, 1), and
(−1, 1), respectively, was used in a plane stress finite element analysis. The following nodal displacements (mm)
were obtained:

u1 = 0.1 u2 = 0.3 u3 = 0.6 u4 = 0.1
v1 = 0.1 v2 = 0.3 v3 = 0.7 v4 = 0.5

If Young’s modulus E=200 000 N/mm2 and Poisson’s ratio ν =0.3, calculate the stresses at the center of
the element.

Ans. σx=51.65N/mm2, σy=55.49N/mm2, τxy=13.46N/mm2.
P.6.12 A rectangular element used in plane stress analysis has corners whose coordinates in meters referred
to an Oxy axes system are 1(−2, −1), 2(2, −1), 3(2, 1), and 4(−2, 1). The displacements of the corners (in
meters) are

u1 = 0.001 u2 = 0.003 u3 = −0.003 u4 = 0
v1 = −0.004 v2 = −0.002 v3 = 0.001 v4 = 0.001

If Young’s modulus is 200000N/mm2 and Poisson’s ratio is 0.3, calculate the strains at the center of the element.

Ans. εx = −0.000125, εy = 0.002, γxy = −0.0015.
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P.6.13 Aconstant strain triangular element has corners 1(0, 0), 2(4, 0), and 3(2, 2) and is 1 unit thick. If the elasticity
matrix [D] has elements D11=D22=a, D12=D1=b, D13=D23=D31=D32=0, and D33=c, derive the stiffness
matrix for the element.

Ans.

[Ke]= 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a+ c
b+ c a+ c

−a+ c −b+ c a+ c
b− c a− c −b− c a+ c
−2c −2c −2c 2c 4c

−2b −2a 2b −2a 0 4a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P.6.14 The following interpolation formula is suggested as a displacement function for deriving the stiffness of a
plane stress rectangular element of uniform thickness t shown in Fig. P.6.14.

u= 1

4ab
[(a− x)(b− y)u1+ (a+ x)(b− y)u2+ (a+ x)(b+ y)u3

+ (a− x)(b+ y)u1]
Form the strain matrix and obtain the stiffness coefficients K11 and K12 in terms of the material constants c, d,

and e defined in the following.

Fig. P.6.14

In the elasticity matrix [D]

D11 = D22 = c D12 = d D33 = e and D13 = D23 = 0
Ans. K11 = t(4c+ e)/6, K12 = t(d+ e)/4.
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CHAPTER

7Bending of Thin Plates

Generally, we define a thin plate as a sheet of material whose thickness is small compared with its
other dimensions but which is capable of resisting bending in addition to membrane forces. Such
a plate forms a basic part of an aircraft structure, being, for example, the area of stressed skin
bounded by adjacent stringers and ribs in a wing structure or by adjacent stringers and frames in a
fuselage.
In this chapter, we shall investigate the effect of a variety of loading and support conditions on

the small deflection of rectangular plates. Two approaches are presented: an “exact” theory based
on the solution of a differential equation and an energy method relying on the principle of the sta-
tionary value of the total potential energy of the plate and its applied loading. The latter theory
will subsequently be used in Chapter 9 to determine the buckling loads for unstiffened and stiffened
panels.

7.1 PURE BENDING OF THIN PLATES
The thin rectangular plate of Fig. 7.1 is subjected to pure bending moments of intensity Mx and My
per unit length uniformly distributed along its edges. The former bending moment is applied along the
edges parallel to the y axis, and the latter along the edges parallel to the x axis. We shall assume that
these bending moments are positive when they produce compression at the upper surface of the plate
and tension at the lower.
If we further assume that the displacement of the plate in a direction parallel to the z axis is small

compared with its thickness t and that sections which are plane before bending remain plane after
bending, then, as in the case of simple beam theory, the middle plane of the plate does not deform
during the bending and is therefore a neutral plane. We take the neutral plane as the reference plane for
our system of axes.
Let us consider an element of the plate of side δxδy and having a depth equal to the thickness t of

the plate as shown in Fig. 7.2(a). Suppose that the radii of curvature of the neutral plane n are ρx and
ρy in the xz and yz planes, respectively (Fig. 7.2(b)). Positive curvature of the plate corresponds to the
positive bending moments, which produce displacements in the positive direction of the z or downward
axis. Again, as in simple beam theory, the direct strains εx and εy corresponding to direct stresses

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00007-5 219
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Fig. 7.1

Plate subjected to pure bending.

Fig. 7.2

(a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane.

σx and σy of an elemental lamina of thickness δz a distance z below the neutral plane are given by

εx = z

ρx
εy = z

ρy
(7.1)

Referring to Eqs. (1.52), we have

εx = 1

E
(σx − νσy) εy = 1

E
(σy− νσx) (7.2)
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Substituting for εx and εy from Eqs. (7.1) into (7.2) and rearranging gives

σx = Ez

1− ν2

(
1

ρx
+ ν

ρy

)

σy = Ez

1− ν2

(
1

ρy
+ ν

ρx

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7.3)

Aswould be expected fromour assumption of plane sections remaining plane, the direct stresses vary
linearly across the thickness of the plate, their magnitudes depending on the curvatures (i.e., bending
moments) of the plate. The internal direct stress distribution on each vertical surface of the element
must be in equilibrium with the applied bending moments. Thus,

Mxδy=
t/2∫

−t/2
σxzδydz

and

Myδx =
t/2∫

−t/2
σyzδxdz

Substituting for σx and σy from Eqs. (7.3) gives

Mx =
t/2∫

−t/2

Ez2

1− ν2

(
1

ρx
+ ν

ρy

)
dz

My =
t/2∫

−t/2

Ez2

1− ν2

(
1

ρy
+ ν

ρx

)
dz

Let

D=
t/2∫

−t/2

Ez2

1− ν2
dz = Et3

12(1− ν2)
(7.4)

Then,

Mx = D
(
1

ρx
+ ν

ρy

)
(7.5)

My = D
(
1

ρy
+ ν

ρx

)
(7.6)

in which D is known as the flexural rigidity of the plate.
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Ifw is the deflection of any point on the plate in the z direction, then wemay relate w to the curvature
of the plate in the same manner as the well-known expression for beam curvature. Hence

1

ρx
= −∂2w

∂x2
1

ρy
= −∂2w

∂y2

the negative signs resulting from the fact that the centers of curvature occur above the plate in which
region z is negative. Equations (7.5) and (7.6) then become

Mx = −D
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
(7.7)

My = −D
(

∂2w

∂y2
+ ν

∂2w

∂x2

)
(7.8)

Equations (7.7) and (7.8) define the deflected shape of the plate provided that Mx andMy are known. If
either Mx or My is zero, then

∂2w

∂x2
= −ν

∂2w

∂y2
or

∂2w

∂y2
= −ν

∂2w

∂x2

and the plate has curvatures of opposite signs. The case of My=0 is illustrated in Fig. 7.3. A surface
possessing two curvatures of opposite sign is known as an anticlastic surface, as opposed to a synclastic
surface, which has curvatures of the same sign. Further, ifMx=My=M, then from Eqs. (7.5) and (7.6)

1

ρx
= 1

ρy
= 1

ρ

Therefore, the deformed shape of the plate is spherical and of curvature

1

ρ
= M

D(1+ ν)
(7.9)

Fig. 7.3

Anticlastic bending.
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7.2 PLATES SUBJECTED TO BENDING AND TWISTING
In general, the bendingmoments applied to the platewill not be in planes perpendicular to its edges. Such
bending moments, however, may be resolved in the normal manner into tangential and perpendicular
components, as shown in Fig. 7.4. The perpendicular components are seen to be Mx and My as before,
while the tangential componentsMxy andMyx (again these aremoments per unit length) produce twisting
of the plate about axes parallel to the x and y axes. The systemof suffixes and the sign convention for these
twisting moments must be clearly understood to avoid confusion.Mxy is a twisting moment intensity in
a vertical x plane parallel to the y axis, whereasMyx is a twisting moment intensity in a vertical y plane
parallel to the x axis. Note that the first suffix gives the direction of the axis of the twisting moment. We
also define positive twisting moments as being clockwise when viewed along their axes in directions
parallel to the positive directions of the corresponding x or y axis. In Fig. 7.4, therefore, all moment
intensities are positive.
Since the twisting moments are tangential moments or torques, they are resisted by a system of

horizontal shear stresses τxy, as shown in Fig. 7.6. From a consideration of complementary shear stresses
(see Fig. 7.6),Mxy=−Myx , so that we may represent a general moment application to the plate in terms
of Mx , My, and Mxy as shown in Fig. 7.5(a). These moments produce tangential and normal moments,
Mt and Mn, on an arbitrarily chosen diagonal plane FD. We may express these moment intensities (in
an analogous fashion to the complex stress systems of Section 1.6) in terms of Mx,My, andMxy. Thus,
for equilibrium of the triangular element ABC of Fig. 7.5(b) in a plane perpendicular to AC

MnAC=MxABcosα +MyBCsinα −MxyABsinα −MxyBCcosα

giving

Mn =Mx cos2α +My sin2α −Mxy sin2α (7.10)

Similarly, for equilibrium in a plane parallel to CA

MtAC=MxABsinα −MyBCcosα +MxyABcosα −MxyBCsinα

Fig. 7.4

Plate subjected to bending and twisting.
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Fig. 7.5

(a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitrary plane.

Fig. 7.6

Complementary shear stresses due to twisting moments Mxy.

or

Mt = (Mx −My)
2

sin2α +Mxy cos2α (7.11)

(compare Eqs. (7.10) and (7.11) with Eqs. (1.8) and (1.9)). We observe from Eq. (7.11) that there are
two values of α, differing by 90◦ and given by

tan2α = − 2Mxy
Mx −My
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for which Mt=0, leaving normal moments of intensity Mn on two mutually perpendicular planes.
These moments are termed principal moments, and their corresponding curvatures are called principal
curvatures. For a plate subjected to pure bending and twisting in which Mx ,My, andMxy are invariable
throughout the plate, the principal moments are the algebraically greatest and least moments in the plate.
It follows that there are no shear stresses on these planes and that the corresponding direct stresses, for
a given value of z and moment intensity, are the algebraically greatest and least values of direct stress
in the plate.
Let us now return to the loaded plate of Fig. 7.5(a). We have established, in Eqs. (7.7) and (7.8),

the relationships between the bending moment intensities Mx andMy and the deflection w of the plate.
The next step is to relate the twisting moment Mxy to w. From the principle of superposition, we may
consider Mxy acting separately from Mx and My. As stated previously, Mxy is resisted by a system of
horizontal complementary shear stresses on the vertical faces of sections taken throughout the thickness
of the plate parallel to the x and y axes. Consider an element of the plate formed by such sections, as
shown in Fig. 7.6. The complementary shear stresses on a lamina of the element a distance z below
the neutral plane are, in accordance with the sign convention of Section 1.2, τxy. Therefore, on the face
ABCD

Mxyδy= −
t/2∫

−t/2
τxyδyzdz

and on the face ADFE

Mxyδx = −
t/2∫

−t/2
τxyδxzdz

giving

Mxy = −
t/2∫

−t/2
τxyzdz

or in terms of the shear strain γxy and modulus of rigidity G

Mxy = −G
t/2∫

−t/2
γxyzdz (7.12)

Referring to Eqs. (1.20), the shear strain γxy is given by

γxy = ∂v

∂x
+ ∂u

∂y

Werequire, of course, to express γxy in termsof the deflectionw of the plate; thismaybe accomplished
as follows. An element taken through the thickness of the plate will suffer rotations equal to ∂w/∂x and
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Fig. 7.7

Determination of shear strain γxy.

∂w/∂y in the xz and yz planes, respectively. Considering the rotation of such an element in the xz plane,
as shown in Fig. 7.7, we see that the displacement u in the x direction of a point a distance z below the
neutral plane is

u= −∂w

∂x
z

Similarly, the displacement v in the y direction is

v= −∂w

∂y
z

Hence, substituting for u and v in the expression for γxy, we have

γxy = −2z ∂2w

∂x∂y
(7.13)

from which Eq. (7.12)

Mxy = G
t/2∫

−t/2
2z2

∂2w

∂x∂y
dz

or

Mxy = Gt3

6

∂2w

∂x∂y

Replacing G by the expression E/2(1+ν) established in Eq. (1.50) gives

Mxy = Et3

12(1+ ν)

∂2w

∂x∂y
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Multiplying the numerator and denominator of this equation by the factor (1−ν) yields

Mxy = D(1− ν)
∂2w

∂x∂y
(7.14)

Equations (7.7), (7.8), and (7.14) relate the bending and twisting moments to the plate deflection
and are analogous to the bending moment–curvature relationship for a simple beam.

7.3 PLATES SUBJECTED TO A DISTRIBUTED TRANSVERSE LOAD
The relationships between bending and twisting moments and plate deflection are now employed in
establishing the general differential equation for the solution of a thin rectangular plate, supporting
a distributed transverse load of intensity q per unit area (see Fig. 7.8). The distributed load may, in
general, vary over the surface of the plate and is, therefore, a function of x and y. We assume, as in
the preceding analysis, that the middle plane of the plate is the neutral plane and that the plate deforms
such that plane sections remain plane after bending. This latter assumption introduces an apparent
inconsistency in the theory. For plane sections to remain plane, the shear strains γxz and γyz must be
zero. However, the transverse load produces transverse shear forces (and therefore stresses) as shown in
Fig. 7.9.We therefore assume that although γxz=τxz/G and γyz=τyz/G are negligible, the corresponding
shear forces are of the same order of magnitude as the applied load q and the moments Mx, My, and
Mxy. This assumption is analogous to that made in a slender beam theory in which shear strains are
ignored.
The element of plate shown in Fig. 7.9 supports bending and twisting moments as previously

described and, in addition, vertical shear forces Qx and Qy per unit length on faces perpendicular to the
x and y axes, respectively. The variation of shear stresses τxz and τyz along the small edges δx, δy of
the element is neglected, and the resultant shear forces Qxδy and Qyδx are assumed to act through the

Fig. 7.8

Plate supporting a distributed transverse load.
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Fig. 7.9

Plate element subjected to bending, twisting, and transverse loads.

centroid of the faces of the element. From the previous sections,

Mx =
t/2∫

−t/2
σxzdz My =

t/2∫
−t/2

σyzdz Mxy = (−Myx) = −
t/2∫

−t/2
τxyzdz

In a similar fashion,

Qx =
t/2∫

−t/2
τxz dz Qy =

t/2∫
−t/2

τyz dz (7.15)

For equilibrium of the element parallel to Oz and assuming that the weight of the plate is included
in q (

Qx + ∂Qx
∂x

δx

)
δy−Qxδy+

(
Qy+ ∂Qy

∂y
δy

)
δx−Qyδx+ qδxδy= 0

or, after simplification,

∂Qx
∂x

+ ∂Qy
∂y

+ q = 0 (7.16)
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Taking moments about the x axis

Mxyδy−
(
Mxy+ ∂Mxy

∂x
δx

)
δy−Myδx+

(
My+ ∂My

∂y
δy

)
δx

−
(
Qy+ ∂Qy

∂y
δy

)
δxδy+Qx δy

2

2
−
(
Qx + ∂Qx

∂x
δx

)
δy2

2
− qδx δy

2

2
= 0

Simplifying this equation and neglecting small quantities of a higher order than those retained give

∂Mxy
∂x

− ∂My
∂y

+Qy = 0 (7.17)

Similarly, taking moments about the y axis, we have

∂Mxy
∂y

− ∂Mx
∂x

+Qx = 0 (7.18)

Substituting in Eq. (7.16) for Qx and Qy from Eqs. (7.18) and (7.17), we obtain

∂2Mx
∂x2

− ∂2Mxy
∂x∂y

+ ∂2My
∂y2

− ∂2Mxy
∂x∂y

= −q
or

∂2Mx
∂x2

− 2∂2Mxy
∂x∂y

+ ∂2My
∂y2

= −q (7.19)

Replacing Mx , Mxy, and My in Eq. (7.19) from Eqs. (7.7), (7.14), and (7.8) gives

∂4w

∂x4
+ 2 ∂4w

∂x2∂y2
+ ∂4w

∂y4
= q

D
(7.20)

This equation may also be written as(
∂2

∂x2
+ ∂2

∂y2

)(
∂2w

∂x2
+ ∂2w

∂y2

)
= q

D

or (
∂2

∂x2
+ ∂2

∂y2

)2
w= q

D

The operator (∂2/∂x2+∂2/∂y2) is the well-known Laplace operator in two dimensions and is sometimes
written as ∇2. Thus,

(∇2)2w= q

D

Generally, the transverse distributed load q is a function of x and y so that the determination of
the deflected form of the plate reduces to obtaining a solution of Eq. (7.20), which satisfies the known
boundary conditions of the problem. The bending and twisting moments follow from Eqs. (7.7), (7.8),
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and (7.14), and the shear forces per unit length Qx and Qy are found from Eqs. (7.17) and (7.18) by
substitution for Mx , My, and Mxy in terms of the deflection w of the plate; thus,

Qx = ∂Mx
∂x

− ∂Mxy
∂y

= −D ∂

∂x

(
∂2w

∂x2
+ ∂2w

∂y2

)
(7.21)

Qy = ∂My
∂y

− ∂Mxy
∂x

= −D ∂

∂y

(
∂2w

∂x2
+ ∂2w

∂y2

)
(7.22)

Direct and shear stresses are then calculated from the relevant expressions relating them to Mx, My,
Mxy, Qx , and Qy. Before discussing the solution of Eq. (7.20) for particular cases, we shall establish
boundary conditions for various types of edge support.

7.3.1 The Simply Supported Edge
Let us suppose that the edge x=0 of the thin plate shown in Fig. 7.10 is free to rotate but not to deflect.
The edge is then said to be simply supported. The bending moment along this edge must be zero and
also the deflection w=0. Thus,

(w)x=0 = 0 and (Mx)x=0 = −D
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x=0

= 0

The condition that w=0 along the edge x=0 also means that
∂w

∂y
= ∂2w

∂y2
= 0

along this edge. The preceding boundary conditions, therefore, reduce to

(w)x=0 = 0
(

∂2w

∂x2

)
x=0

= 0 (7.23)

Fig. 7.10

Plate of dimensions a×b.
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7.3.2 The Built-In Edge
If the edge x=0 is built-in or firmly clamped so that it can neither rotate nor deflect, then, in addition
to w, the slope of the middle plane of the plate normal to this edge must be zero. That is,

(w)x=0 = 0
(

∂w

∂x

)
x=0

= 0 (7.24)

7.3.3 The Free Edge
Along a free edge there are no bending moments, twisting moments, or vertical shearing forces, so that
if x=0 is the free edge, then

(Mx)x=0 = 0 (Mxy)x=0 = 0 (Qx)x=0 = 0
giving, in this instance, three boundary conditions. However, Kirchhoff (1850) showed that only two
boundary conditions are necessary to obtain a solution of Eq. (7.20), and that the reduction is obtained
by replacing the two requirements of zero twisting moment and zero shear force by a single equivalent
condition. Thomson and Tait (1883) gave a physical explanation of how this reduction may be effected.
They pointed out that the horizontal force system equilibrating the twistingmomentMxymay be replaced
along the edge of the plate by a vertical force system.
Consider two adjacent elements, δy1 and δy2, along the edge of the thin plate of Fig. 7.11. The

twisting moment Mxyδy1 on the element δy1 may be replaced by forces Mxy a distance δy1 apart.
Note that Mxy, being a twisting moment per unit length, has the dimensions of force. The twisting
moment on the adjacent element δy2 is [Mxy+ (∂Mxy/∂y)δy]δy2. Again, this may be replaced by forces
Mxy+ (∂Mxy/∂y)δy. At the common surface of the two adjacent elements, there is now a resultant force
(∂Mxy/∂y)δy or a vertical force per unit length of ∂Mxy/∂y. For the sign convention for Qx shown in
Fig. 7.9, we have a statically equivalent vertical force per unit length of (Qx−∂Mxy/∂y). The separate

Fig. 7.11

Equivalent vertical force system.
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conditions for a free edge of (Mxy)x=0=0 and (Qx)x=0=0 are therefore replaced by the equivalent
condition (

Qx − ∂Mxy
∂y

)
x=0

= 0

or in terms of deflection [
∂3w

∂x3
+ (2− ν)

∂3w

∂x∂y2

]
x=0

= 0 (7.25)

Also, for the bending moment along the free edge to be zero,

(Mx)x=0 =
(

∂2w

∂x2
+ ν

∂2w

∂y2

)
x=0

= 0 (7.26)

The replacement of the twisting moment Mxy along the edges x=0 and x=a of a thin plate by
a vertical force distribution results in leftover concentrated forces at the corners of Mxy as shown in
Fig. 7.11. By the same argument, there are concentrated forces Myx produced by the replacement of
the twisting moment Myx . Since Mxy=−Myx , then resultant forces 2Mxy act at each corner as shown
and must be provided by external supports if the corners of the plate are not to move. The directions
of these forces are easily obtained if the deflected shape of the plate is known. For example, a thin
plate simply supported along all four edges and uniformly loaded has ∂w/∂x positive and numerically
increasing, with increasing y near the corner x=0, y=0. Hence, ∂2w/∂x∂y is positive at this point,
and from Eq. (7.14), we see that Mxy is positive andMyx negative; the resultant force 2Mxy is therefore
downward. From symmetry, the force at each remaining corner is also 2Mxy downward so that the
tendency is for the corners of the plate to rise.
Having discussed various types of boundary conditions, we shall proceed to obtain the solution for

the relatively simple case of a thin rectangular plate of dimensions a×b, simply supported along each
of its four edges and carrying a distributed load q(x, y).We have shown that the deflected form of the
plate must satisfy the differential equation

∂4w

∂x4
+ 2 ∂4w

∂x2∂y2
+ ∂4w

∂y4
= q(x,y)

D

with the boundary conditions

(w)x=0,a = 0
(

∂2w

∂x2

)
x=0,a

= 0

(w)y=0,b = 0
(

∂2w

∂y2

)
x=0,b

= 0

Navier (1820) showed that these conditions are satisfied by representing the deflection w as an infinite
trigonometrical or Fourier series

w=
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b
(7.27)
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in which m represents the number of half waves in the x direction and n represents the corresponding
number in the y direction. Further, Amn are unknown coefficients, which must satisfy the preceding
differential equation and may be determined as follows.
We may also represent the load q(x, y) by a Fourier series; thus,

q(x,y) =
∞∑
m=1

∞∑
n=1
amn sin

mπx

a
sin
nπy

b
(7.28)

A particular coefficient am′n′ is calculated by first multiplying both sides of Eq. (7.28) by sin(m′πx/a)
sin(n′πy/b) and integrating with respect to x from 0 to a and with respect to y from 0 to b. Thus,

a∫
0

b∫
0

q(x,y)sin
m′πx
a

sin
n′πy
b
dxdy

=
∞∑
m=1

∞∑
n=1

a∫
0

b∫
0

amn sin
mπx

a
sin
m′πx
a

sin
nπy

b
sin
n′πy
b
dxdy

= ab

4
am′n′

since
a∫
0

sin
mπx

a
sin
m′πx
a

dx = 0 when m 
= m′

= a

2
when m= m′

and

b∫
0

sin
nπy

b
sin
n′πy
b
dy= 0 when n 
= n′

= b

2
when n= n′

It follows that

am′n′ = 4

ab

a∫
0

b∫
0

q(x,y)sin
m′πx
a

sin
n′πy
b
dxdy (7.29)

Substituting now for w and q(x, y) from Eqs. (7.27) and (7.28) into the differential equation for w, we
have

∞∑
m=1

∞∑
n=1

{
Amn

[(mπ

a

)4+ 2
(mπ

a

)2 (nπ
b

)2+
(nπ
b

)4]− amn
D

}
sin
mπx

a
sin
nπy

b
= 0
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This equation is valid for all values of x and y so that

Amn

[(mπ

a

)4+ 2
(mπ

a

)2 (nπ
b

)2+
(nπ
b

)4]− amn
D

= 0

or in alternative form

Amnπ
4
(
m2

a2
+ n2

b2

)2
− amn
D

= 0

giving

Amn = 1

π4D

amn
[(m2/a2) + (n2/b2)]2

Hence,

w= 1

π4D

∞∑
m=1

∞∑
n=1

amn
[(m2/a2) + (n2/b2)]2

sin
mπx

a
sin
nπy

b
(7.30)

in which amn is obtained from Eq. (7.29). Equation (7.30) is the general solution for a thin rectangular
plate under a transverse load q(x, y).

Example 7.1
A thin rectangular plate a×b is simply supported along its edges and carries a uniformly distributed load
of intensity q0. Determine the deflected form of the plate and the distribution of bending moment.

Since q(x, y)=q0, we find from Eq. (7.29) that

amn = 4q0
ab

a∫
0

b∫
0

sin
mπx

a
sin
nπy

b
dxdy= 16q0

π2mn
,

where m and n are odd integers. For m or n even, amn=0. Hence, from Eq. (7.30)

w= 16q0
π6D

∞∑
m=1,3,5

∞∑
n=1,3,5

sin(mπx/a)sin(nπy/b)

mn[(m2/a2) + (n2/b2)]2
(i)

The maximum deflection occurs at the center of the plate, where x=a/2, y=b/2. Thus,

wmax = 16q0
π6D

∞∑
m=1,3,5

∞∑
n=1,3,5

sin(mπ/2)sin(nπ/2)

mn[(m2/a2) + (n2/b2)]2
(ii)

This series is found to converge rapidly, the first few terms giving a satisfactory answer. For a square
plate, taking ν =0.3, summation of the first four terms of the series gives

wmax = 0.0443q0 a
4

Et3
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Substitution for w from Eq. (i) into the expressions for bending moment, Eqs. (7.7) and (7.8), yields

Mx = 16q0
π4

∞∑
m=1,3,5

∞∑
n=1,3,5

[(m2/a2) + ν(n2/b2)]

mn[(m2/a2) + (n2/b2)]2
sin
mπx

a
sin
nπy

b
(iii)

My = 16q0
π4

∞∑
m=1,3,5

∞∑
n=1,3,5

[ν(m2/a2) + (n2/b2)]

mn[(m2/a2) + (n2/b2)]2
sin
mπx

a
sin
nπy

b
(iv)

Maximum values occur at the center of the plate. For a square plate a=b, and the first five terms give

Mx,max =My,max = 0.0479q0a2

Comparing Eqs. (7.3) with Eqs. (7.5) and (7.6), we observe that

σx = 12Mxz

t3
σy = 12Myz

t3

Again, the maximum values of these stresses occur at the center of the plate at z= ± t/2 so that

σx,max = 6Mx
t2

σy,max = 6My
t2

For the square plate,

σx,max = σy,max = 0.287q0 a
2

t2

The twisting moment and shear stress distributions follow in a similar manner.
The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an exact solution

for displacements and stresses. However, a more rapid, but approximate, solution may be obtained by
assuming a displacement function in the form of a polynomial. The polynomial must, of course, satisfy
the governing differential equation (Eq. (7.20)) and the boundary conditions of the specific problem.
The “guessed” form of the deflected shape of a plate is the basis for the energy method of solution
described in Section 7.6.

Example 7.2
Show that the deflection function

w= A(x2y2− bx2y− axy2+ abxy)

is valid for a rectangular plate of sides a and b, built in on all four edges and subjected to a uniformly
distributed load of intensity q. If the material of the plate has a Young’s modulus E and is of thickness
t, determine the distributions of bending moment along the edges of the plate.
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Differentiating the deflection function gives

∂4w

∂x4
= 0 ∂4w

∂y4
= 0 ∂4w

∂x2∂y2
= 4A

Substituting in Eq. (7.20), we have

0+ 2× 4A+ 0= constant= q

D

The deflection function is therefore valid and

A= q

8D

The bending moment distributions are given by Eqs. (7.7) and (7.8); that is,

Mx = −q
4
[y2− by+ ν (x2− ax)] (i)

My = −q
4
[x2− ax+ ν (y2− by)] (ii)

For the edges x=0 and x=a,

Mx = −q
4
(y2− by) My = −νq

4
(y2− by)

For the edges y=0 and y=b,

Mx = −νq

4
(x2− ax) My = −q

4
(x2− ax)

7.4 COMBINED BENDING AND IN-PLANE LOADING
OF A THIN RECTANGULAR PLATE

So far our discussion has been limited to small deflections of thin plates produced by different
forms of transverse loading. In these cases, we assumed that the middle or neutral plane of the plate
remained unstressed. Additional in-plane tensile, compressive, or shear loads will produce stresses in
the middle plane, and these, if of sufficient magnitude, will affect the bending of the plate. Where
the in-plane stresses are small compared with the critical buckling stresses, it is sufficient to con-
sider the two systems separately; the total stresses are then obtained by superposition. On the other
hand, if the in-plane stresses are not small, then their effect on the bending of the plate must be
considered.
The elevation and plan of a small element δxδy of the middle plane of a thin deflected plate are

shown in Fig. 7.12. Direct and shear forces per unit length produced by the in-plane loads are given the
notation Nx, Ny, and Nxy and are assumed to be acting in positive senses in the directions shown. Since
there are no resultant forces in the x or y directions from the transverse loads (see Fig. 7.9), we need
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Fig. 7.12

In-plane forces on plate element.

only to include the in-plane loads shown in Fig. 7.12 when considering the equilibrium of the element
in these directions. For equilibrium parallel to Ox,(

Nx + ∂Nx
∂x

δx

)
δycos

(
∂w

∂x
+ ∂2w

∂x2
δx

)
−Nxδycos ∂w

∂x

+
(
Nyx + ∂Nyx

∂y
δy

)
δx−Nyxδx = 0

For small deflections, ∂w/∂x and (∂w/∂x)+ (∂2w/∂x2)δx are small, and the cosines of these angles
are therefore approximately equal to one. The equilibrium equation thus simplifies to

∂Nx
∂x

+ ∂Nyx
∂y

= 0 (7.31)

Similarly, for equilibrium in the y direction, we have

∂Ny
∂y

+ ∂Nxy
∂x

= 0 (7.32)

Note that the components of the in-plane shear loads per unit length are, to a first order of approximation,
the value of the shear load multiplied by the projection of the element on the relevant axis.
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Fig. 7.13

Component of shear loads in the z direction.

The determination of the contribution of the shear loads to the equilibrium of the element in the
z direction is complicated by the fact that the element possesses curvature in both xz and yz planes.
Therefore, from Fig. 7.13, the component in the z direction due to the Nxy shear loads only is(

Nxy+ ∂Nxy
∂x

δx

)
δy

(
∂w

∂y
+ ∂2w

∂x ∂y
δx

)
−Nxyδy∂w

∂y

or

Nxy
∂2w

∂x ∂y
δx δy+ ∂Nxy

∂x

∂w

∂y
δx δy

neglecting terms of a lower order. Similarly, the contribution of Nyx is

Nyx
∂2w

∂x ∂y
δx δy+ ∂Nyx

∂y

∂w

∂x
δx δy

The components arising from the direct forces per unit length are readily obtained from Fig. 7.12,
namely, (

Nx + ∂Nx
∂x

δx

)
δy

(
∂w

∂x
+ ∂2w

∂x2
δx

)
−Nxδy∂w

∂x

or

Nx
∂2w

∂x2
δx δy+ ∂Nx

∂x

∂w

∂x
δx δy

and similarly

Ny
∂2w

∂y2
δx δy+ ∂Ny

∂y

∂w

∂y
δx δy
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The total force in the z direction is found from the summation of these expressions and is

Nx
∂2w

∂x2
δx δy+ ∂Nx

∂x

∂w

∂x
δx δy+Ny ∂

2w

∂y2
δx δy+ ∂Ny

∂y

∂w

∂y
δx δy

+ ∂Nxy
∂x

∂w

∂y
δx δy+ 2Nxy ∂2w

∂x ∂y
δx δy+ ∂Nxy

∂y

∂w

∂x
δx δy

inwhichNyx is equal to and is replaced byNxy. Using Eqs. (7.31) and (7.32), we reduce this expression to(
Nx

∂2w

∂x2
+Ny ∂

2w

∂y2
+ 2Nxy ∂2w

∂x ∂y

)
δx δy

Since the in-plane forces do not produce moments along the edges of the element, Eqs. (7.17) and
(7.18) remain unaffected. Further, Eq. (7.16) may be modified simply by the addition of the preceding
vertical component of the in-plane loads to qδxδy. Therefore, the governing differential equation for a
thin plate supporting transverse and in-plane loads is, from Eq. (7.20),

∂4w

∂x4
+ 2 ∂4w

∂x2 ∂y2
+ ∂4w

∂y4
= 1

D

(
q+Nx ∂

2w

∂x2
+Ny ∂

2w

∂y2
+ 2Nxy ∂2w

∂x ∂y

)
(7.33)

Example 7.3
Determine the deflected form of the thin rectangular plate of Example 7.1 if, in addition to a uniformly
distributed transverse load of intensity q0, it supports an in-plane tensile force Nx per unit length.

The uniform transverse load may be expressed as a Fourier series (see Eq. (7.28) and Example 7.1);
that is,

q = 16q0
π2

∞∑
m=1,3,5

∞∑
n=1,3,5

1

mn
sin
mπx

a
sin
nπy

b

Equation (7.33) then becomes, on substituting for q,

∂4w

∂x4
+ 2 ∂4w

∂x2 ∂y2
+ ∂4w

∂y4
− Nx
D

∂2w

∂x2
= 16q0

π2D

∞∑
m=1,3,5

∞∑
n=1,3,5

1

mn
sin
mπx

a
sin
nπy

b
(i)

The appropriate boundary conditions are

w= ∂2w

∂x2
= 0 at x = 0 and a

w= ∂2w

∂y2
= 0 at y= 0 and b
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These conditions may be satisfied by the assumption of a deflected form of the plate given by

w=
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b

Substituting this expression into Eq. (i) gives

Amn = 16q0

π6Dmn

[(
m2

a2
+ n2

b2

)2
+ Nxm2

π2Da2

] for odd m and n

Amn = 0 for even m and n

Therefore,

w= 16q0
π6D

∞∑
m=1,3,5

∞∑
n=1,3,5

1

mn

[(
m2

a2
+ n2

b2

)2
+ Nxm2

π2Da2

] sin mπx

a
sin
nπy

b
(ii)

Comparing Eq. (ii) with Eq. (i) of Example 7.1, we see that, as a physical inspection would indicate,
the presence of a tensile in-plane force decreases deflection. Conversely, a compressive in-plane force
would increase the deflection.

7.5 BENDING OF THIN PLATES HAVING A SMALL
INITIAL CURVATURE

Suppose that a thin plate has an initial curvature so that the deflection of any point in its middle plane is
w0. We assume that w0 is small compared with the thickness of the plate. The application of transverse
and in-plane loads will cause the plate to deflect a further amount w1 so that the total deflection is then
w=w0+w1. However, in the derivation of Eq. (7.33), we note that the left-hand side was obtained from
expressions for bending moments which themselves depend on the change of curvature. We therefore
use the deflection w1 on the left-hand side, not w. The effect on bending of the in-plane forces depends
on the total deflection w so that we write Eq. (7.33)

∂4w1
∂x4

+ 2 ∂4w1
∂x2∂y2

+ ∂4w1
∂y4

= 1

D

[
q+Nx ∂

2(w0+w1)
∂x2

+Ny ∂
2(w0+w1)

∂y2
+ 2Nxy ∂

2(w0+w1)
∂x ∂y

]
(7.34)
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The effect of an initial curvature on deflection is therefore equivalent to the application of a transverse
load of intensity

Nx
∂2w0
∂x2

+Ny ∂
2w0
∂y2

+ 2Nxy ∂
2w0

∂x ∂y

Thus, in-plane loads alone produce bending, provided there is an initial curvature.
Assuming that the initial form of the deflected plate is

w0 =
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b
(7.35)

then by substitution in Eq. (7.34), we find that if Nx is compressive and Ny=Nxy=0,

w1 =
∞∑
m=1

∞∑
n=1
Bmn sin

mπx

a
sin
nπy

b
(7.36)

where

Bmn = AmnNx
(π2D/a2)[m+ (n2a2/mb2)]2−Nx

We shall return to the consideration of initially curved plates in the discussion of the experimental
determination of buckling loads of flat plates in Chapter 9.

7.6 ENERGY METHOD FOR THE BENDING OF THIN PLATES
Two types of solution are obtainable for thin plate bending problems by the application of the principle
of the stationary value of the total potential energy of the plate and its external loading. The first, in
which the form of the deflected shape of the plate is known, produces an exact solution; the second, the
Rayleigh–Ritz method, assumes an approximate deflected shape in the form of a series having a finite
number of terms chosen to satisfy the boundary conditions of the problem and also to give the kind of
deflection pattern expected.
In Chapter 5, we saw that the total potential energy of a structural system comprised the internal or

strain energy of the structural member, plus the potential energy of the applied loading.We now proceed
to derive expressions for these quantities for the loading cases considered in the preceding sections.

7.6.1 Strain Energy Produced by Bending and Twisting
In thin plate analysis, we are concerned with deflections normal to the loaded surface of the plate. These,
as in the case of slender beams, are assumed to be primarily due to bending action so that the effects
of shear strain and shortening or stretching of the middle plane of the plate are ignored. Therefore, it
is sufficient for us to calculate the strain energy produced by bending and twisting only as this will be
applicable, for the reason of the preceding assumption, to all loading cases. It must be remembered that
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Fig. 7.14

(a) Strain energy of element due to bending; (b) strain energy due to twisting.

we are only neglecting the contributions of shear and direct strains on the deflection of the plate; the
stresses producing them must not be ignored.
Consider the element δx×δy of a thin plate a×b shown in elevation in the xz plane in Fig. 7.14(a).

Bending momentsMx per unit length applied to its δy edge produce a change in slope between its ends
equal to (∂2w/∂x2)δx. However, since we regard the moments Mx as positive in the sense shown, then
this change in slope, or relative rotation, of the ends of the element is negative as the slope decreases
with increasing x. The bending strain energy due to Mx is then

1

2
Mxδy

(
−∂2w

∂x2
δx

)

Similarly, in the yz plane the contribution of My to the bending strain energy is

1

2
Myδx

(
−∂2w

∂y2
δy

)

The strain energy due to the twisting moment per unit length, Mxy, applied to the δy edges of the
element, is obtained from Fig. 7.14(b). The relative rotation of the δy edges is (∂2w/∂x∂y)δx so that the
corresponding strain energy is

1

2
Mxyδy

∂2w

∂x ∂y
δx

Finally, the contribution of the twisting moment Mxy on the δx edges is, in a similar fashion,

1

2
Mxyδx

∂2w

∂x ∂y
δy
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The total strain energy of the element from bending and twisting is thus

1

2

(
−Mx ∂

2w

∂x2
−My ∂

2w

∂y2
+ 2Mxy ∂2w

∂x ∂y

)
δxδy

Substitution for Mx, My, and Mxy from Eqs. (7.7), (7.8), and (7.14) gives the total strain energy of the
element as

D

2

[(
∂2w

∂x2

)2
+
(

∂2w

∂y2

)2
+ 2ν ∂2w

∂x2
∂2w

∂y2
+ 2(1− ν)

(
∂2w

∂x ∂y

)2]
δx δy

which on rearranging becomes

D

2

{(
∂2w

∂x2
+ ∂2w

∂y2

)2
− 2(1− ν)

[
∂2w

∂x2
∂2w

∂y2
−
(

∂2w

∂x ∂y

)2]}
δx δy

Hence, the total strain energy U of the rectangular plate a×b is

U = D

2

a∫
0

b∫
0

{(
∂2w

∂x2
+ ∂2w

∂y2

)2
− 2(1− ν)

[
∂2w

∂x2
∂2w

∂y2
−
(

∂2w

∂x ∂y

)2]}
dxdy (7.37)

Note that if the plate is subject to pure bending only, then Mxy=0, and from Eq. (7.14) ∂2w/∂x∂y=0,
so that Eq. (7.37) simplifies to

U = D

2

a∫
0

b∫
0

[(
∂2w

∂x2

)2
+
(

∂2w

∂y2

)2
+ 2ν ∂2w

∂x2
∂2w

∂y2

]
dxdy (7.38)

7.6.2 Potential Energy of a Transverse Load
An element δx×δy of the transversely loaded plate of Fig. 7.8 supports a load qδxδy. If the displacement
of the element normal to the plate is w, then the potential energy δV of the load on the element referred
to the undeflected plate position is

δV = −wqδx δy See Section 5.7

Therefore, the potential energy V of the total load on the plate is given by

V = −
a∫
0

b∫
0

wqdxdy (7.39)
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7.6.3 Potential Energy of In-Plane Loads
We may consider each load Nx , Ny, and Nxy in turn, and then use the principle of super-position
to determine the potential energy of the loading system when they act simultaneously. Consider an
elemental strip of width δy along the length a of the plate in Fig. 7.15(a). The compressive load on
this strip is Nxδy, and due to the bending of the plate, the horizontal length of the strip decreases by an
amount λ, as shown in Fig. 7.15(b). The potential energy δVx of the loadNxδy, referred to the undeflected
position of the plate as the datum, is then

δVx = −Nxλδy (7.40)

From Fig. 7.15(b), the length of a small element δa of the strip is

δa= (δx2+ δw2)
1
2

Fig. 7.15

(a) In-plane loads on plate; (b) shortening of element due to bending.
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and since ∂w/∂x is small, then

δa≈ δx

[
1+ 1

2

(
∂w

∂x

)2]

Hence,

a=
a′∫
0

[
1+ 1

2

(
∂w

∂x

)2]
dx

giving

a= a′ +
a′∫
0

1

2

(
∂w

∂x

)2
dx

and

λ = a− a′ =
a′∫
0

1

2

(
∂w

∂x

)2
dx

Since

a′∫
0

1

2

(
∂w

∂x

)2
dx only differs from

a∫
0

1

2

(
∂w

∂x

)2
dx

by a term of negligible order, we write

λ =
a∫
0

1

2

(
∂w

∂x

)2
dx (7.41)

The potential energy Vx of the Nx loading follows from Eqs. (7.40) and (7.41); thus,

Vx = −1
2

a∫
0

b∫
0

Nx

(
∂w

∂x

)2
dxdy (7.42)

Similarly,

Vy = −1
2

a∫
0

b∫
0

Ny

(
∂w

∂y

)2
dxdy (7.43)

The potential energy of the in-plane shear load Nxy may be found by considering the work done by
Nxy during the shear distortion corresponding to the deflection w of an element. This shear strain is the
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Fig. 7.16

Calculation of shear strain corresponding to bending deflection.

reduction in the right angle C2AB1 to the angle C1AB1 of the element in Fig. 7.16 or, rotating C2A
with respect to AB1 to AD in the plane C1AB1, the angle DAC1. The displacement C2D is equal to
(∂w/∂y)δy, and the angle DC2C1 is ∂w/∂x. Thus, C1D is equal to

∂w

∂x

∂w

∂y
δy

and the angle DAC1 representing the shear strain corresponding to the bending displacement w is

∂w

∂x

∂w

∂y

so that the work done on the element by the shear force Nxyδx is

1

2
Nxyδx

∂w

∂x

∂w

∂y

Similarly, the work done by the shear force Nxyδy is

1

2
Nxyδy

∂w

∂x

∂w

∂y

and the total work done taken over the complete plate is

1

2

a∫
0

b∫
0

2Nxy
∂w

∂x

∂w

∂y
dxdy
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It follows immediately that the potential energy of the Nxy loads is

Vxy = −1
2

a∫
0

b∫
0

2Nxy
∂w

∂x

∂w

∂y
dxdy (7.44)

and for the complete in-plane loading system we have, from Eqs. (7.42), (7.43), and (7.44), a potential
energy of

V = −1
2

a∫
0

b∫
0

[
Nx

(
∂w

∂x

)2
+Ny

(
∂w

∂y

)2
+ 2Nxy ∂w

∂x

∂w

∂y

]
dxdy (7.45)

We are now in a position to solve awide range of thin-plate problems provided that the deflections are
small, obtaining exact solutions if the deflected form is known or approximate solutions if the deflected
shape has to be “guessed.”
Considering the rectangular plate of Section 7.3, simply supported along all four edges and subjected

to a uniformly distributed transverse load of intensity q0, we know that its deflected shape is given by
Eq. (7.27), namely,

w=
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b

The total potential energy of the plate is, from Eqs. (7.37) and (7.39),

U +V =
a∫
0

b∫
0

{
D

2

[(
∂2w

∂x2
+ ∂2w

∂y2

)2

−2(1− ν)

{
∂2w

∂x2
∂2w

∂y2
−
(

∂2w

∂x ∂y

)2}]
−wq0

}
dxdy

(7.46)

Substituting in Eq. (7.46) for w and realizing that “cross-product” terms integrate to zero, we have

U +V =
a∫
0

b∫
0

{
D

2

∞∑
m=1

∞∑
n=1
A2mn

[
π4
(
m2

a2
+ n2

b2

)2
sin2

mπx

a
sin2

nπy

b

−2(1− ν)
m2n2π4

a2b2

(
sin2

mπx

a
sin2

nπy

b
− cos2 mπx

a
cos2

nπy

b

)]

−q0
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b

}
dxdy
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The term multiplied by 2(1−ν) integrates to zero, and the mean value of sin2 or cos2 over a complete
number of half waves is 12 ; thus, integration of the preceding expression yields

U +V = D

2

∞∑
m=1,3,5

∞∑
n=1,3,5

A2mn
π4ab

4

(
m2

a2
+ n2

b2

)2
(7.47)

− q0
∞∑

m=1,3,5

∞∑
n=1,3,5

Amn
4ab

π2mn

From the principle of the stationary value of the total potential energy, we have

∂(U +V)

∂Amn
= D

2
2Amn

π4ab

4

(
m2

a2
+ n2

b2

)2
− q0 4ab

π2mn
= 0

so that

Amn = 16q0
π6Dmn[(m2/a2) + (n2/b2)]2

giving a deflected form

w= 16q0
π6D

∞∑
m=1,3,5

∞∑
n=1,3,5

sin(mπx/a)sin(nπy/b)

mn[(m2/a2) + (n2/b2)]2

which is the result obtained in Eq. (i) of Example 7.1.
The preceding solution is exact since we know the true deflected shape of the plate in the form of an

infinite series for w. Frequently, the appropriate infinite series is not known so that only an approximate
solution may be obtained. The method of solution, known as the Rayleigh–Ritz method, involves the
selection of a series for w containing a finite number of functions of x and y. These functions are chosen
to satisfy the boundary conditions of the problem as far as possible and also to give the type of deflection
pattern expected. Naturally, the more representative the “guessed” functions are, the more accurate the
solution becomes.
Suppose that the “guessed” series for w in a particular problem contains three different functions of

x and y. Thus,

w= A1f1(x,y) +A2 f2(x,y) +A3f3(x,y),
where A1, A2, and A3 are unknown coefficients. We now substitute for w in the appropriate expression
for the total potential energy of the system and assign stationary values with respect to A1, A2, and A3
in turn. Thus,

∂(U +V)

∂A1
= 0 ∂(U +V)

∂A2
= 0 ∂(U +V)

∂A3
= 0

giving three equations, which are solved for A1, A2, and A3.
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Example 7.4
A rectangular plate a×b, is simply supported along each edge and carries a uniformly distributed load
of intensity q0. Assuming a deflected shape given by

w= A11 sin πx

a
sin

πy

b

determine the value of the coefficient A11 and, hence, find the maximum value of deflection.

The expression satisfies the boundary conditions of zero deflection and zero curvature (i.e., zero
bending moment) along each edge of the plate. Substituting for w in Eq. (7.46), we have

U +V =
a∫
0

b∫
0

[
DA211
2

{
π4

(a2b2)2
(a2+ b2)2 sin2 πx

a
sin2

πy

b
− 2(1− ν)

×
[

π4

a2b2
sin2

πx

a
sin2

πy

b
− π4

a2b2
cos2

πx

a
cos2

πy

b

]}

−q0A11 sin πx

a
sin

πy

b

]
dxdy

from which

U +V = DA211
2

π4

4a3b3
(a2+ b2)2− q0A11 4ab

π2

so that

∂(U +V)

∂A11
= DA11π4

4a3b3
(a2+ b2)2− q0 4ab

π2
= 0

and

A11 = 16q0a4b4

π6D(a2+ b2)2
giving

w= 16q0a4b4

π6D(a2+ b2)2 sin
πx

a
sin

πy

b

At the center of the plate, w is a maximum and

wmax = 16q0a4b4

π6D(a2+ b2)2
For a square plate and assuming ν =0.3,

wmax = 0.0455q0 a
4

Et3

which compares favorably with the result of Example 7.1.
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In this chapter, we dealt exclusively with small deflections of thin plates. For a plate subjected
to large deflections, the middle plane will be stretched due to bending so that Eq. (7.33) requires
modification. The relevant theory is outside the scope of this book but may be found in a variety of
references.
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Problems
P.7.1 A 10-mm thick plate is subjected to bending moments Mx equal to 10Nm/mm andMy equal to 5Nm/mm.
Calculate the maximum direct stresses in the plate.

Ans. σx,max=±600N/mm2, σy,max=±300N/mm2.
P.7.2 For the plate and loading of problem P.7.1, find the maximum twisting moment per unit length in the plate
and the direction of the planes on which this occurs.

Ans. 2.5Nm/mm at 45◦ to the x and y axes.

P.7.3 The plate of the previous two problems is subjected to a twisting moment of 5Nm/mm along each edge,
in addition to the bending moments of Mx=10Nm/mm andMy=5Nm/mm. Determine the principal moments in
the plate, the planes on which they act, and the corresponding principal stresses.

Ans. 13.1Nm/mm, 1.9Nm/mm, α=−31.7◦, α=+58.3◦, ±786N/mm2, ±114N/mm2.
P.7.4 A thin rectangular plate of length a and width 2a is simply supported along the edges x=0, x=a, y=−a,
and y=+a. The plate has a flexural rigidity D, a Poisson’s ratio of 0,3 and carries a load distribution given by
q(x, y)=q0 sin(πx/a). If the deflection of the plate may be represented by the expression

w= qa4

Dπ4

(
1+Acosh πy

a
+Bπy

a
sinh

πy

a

)
sin

πx

a
,

determine the values of the constants A and B.

Ans. A=−0.2213, B=0.0431.
P.7.5 A thin, elastic square plate of side a is simply supported on all four sides and supports a uniformly
distributed load q. If the origin of axes coincides with the center of the plate, show that the deflection of the plate
can be represented by the expression

w= q

96(1− ν)D
[2(x4+ y4) − 3a2(1− ν)(x2+ y2)− 12νx2y2+A],
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where D is the flexural rigidity, ν is Poisson’s ratio, and A is a constant. Calculate the value of A and hence the
central deflection of the plate.

Ans. A=a4(5−3ν)/4, Cen. def.=qa4(5−3ν)/384D(1−ν)

P.7.6 The deflection of a square plate of side a, which supports a lateral load represented by the function q(x,y)
is given by

w(x,y) = w0 cos πx

a
cos

3πy

a
,

where x and y are referred to axes whose origin coincides with the center of the plate and w0 is the deflection at the
center.

If the flexural rigidity of the plate is D and Poisson’s ratio is ν, determine the loading function q, the support
conditions of the plate, the reactions at the plate corners, and the bending moments at the center of the plate.

Ans. q(x,y)=w0D100π4

a4
cos

πx

a
cos

3πy

a

The plate is simply supported on all edges.

Reactions: −6w0D
(π

a

)2
(1−ν)

Mx=w0D
(π

a

)2
(1+9ν), My=w0D

(π

a

)2
(9+ν).

P.7.7 A simply supported square plate a×a carries a distributed load according to the formula

q(x,y) = q0 x
a
,

where q0 is its intensity at the edge x=a. Determine the deflected shape of the plate.

Ans. w= 8q0a4

π6D

∞∑
m=1,2,3

∞∑
n=1,3,5

(−1)m+1
mn(m2+ n2)2 sin

mπx

a
sin
nπy

a

P.7.8 An elliptic plate of major and minor axes 2a and 2b and of small thickness t is clamped along its boundary
and is subjected to a uniform pressure difference p between the two faces. Show that the usual differential equation
for normal displacements of a thin flat plate subject to lateral loading is satisfied by the solution

w= w0
(
1− x2

a2
− y2

b2

)2
,

where w0 is the deflection at the center which is taken as the origin.
Determine w0 in terms of p and the relevant material properties of the plate and hence expressions for the

greatest stresses due to bending at the center and at the ends of the minor axis.

Ans. w0 = 3p(1− ν2)

2Et3
(
3

a4
+ 2

a2b2
+ 3

b4

)

Center, σx,max = ±3pa2b2(b2+ νa2)

t2(3b4+ 2a2b2+ 3a4) , σy,max = ±3pa2b2(a2+ νb2)

t2(3b4+ 2a2b2+ 3a4)
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Ends of minor axis

σx,max = ±6pa4b2
t2(3b4+ 2a2b2+ 3a4) , σy,max = ±6pb4a2

t2(3b4+ 2a2b2+ 3a4)
P.7.9 Use the energy method to determine the deflected shape of a rectangular plate a×b, simply supported
along each edge and carrying a concentrated load W at a position (ξ , η) referred to axes through a corner of the
plate. The deflected shape of the plate can be represented by the series

w=
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b

Ans. Amn =
4W sin

mπξ

a
sin
nπη

b
π4Dab[(m2/a2) + (n2/b2)]2

P.7.10 If, in addition to the point load W , the plate of problem P.7.9 supports an in-plane compressive load of Nx
per unit length on the edges x=0 and x=a, calculate the resulting deflected shape.

Ans. Amn =
4W sin

mπξ

a
sin
nπη

b

abDπ4

[(
m2

a2
+ n2

b2

)2
− m2Nx

π2a2D

]

P.7.11 A square plate of side a is simply supported along all four sides and is subjected to a transverse uniformly
distributed load of intensity q0. It is proposed to determine the deflected shape of the plate by the Rayleigh–Ritz
method employing a “guessed” form for the deflection of

w= A11
(
1− 4x2

a2

)(
1− 4y2

a2

)
in which the origin is taken at the center of the plate.

Comment on the degree to which the boundary conditions are satisfied and find the central deflection assuming
ν =0.3.

Ans.
0.0389q0a4

Et3

P.7.12 A rectangular plate a×b, simply supported along each edge, possesses a small initial curvature in its
unloaded state given by

w0 = A11 sin πx

a
sin

πy

b

Determine, using the energy method, its final deflected shape when it is subjected to a compressive load Nx per
unit length along the edges x=0, x=a.

Ans. w= A11[
1− Nxa2

π2D

/(
1+ a2

b2

)2] sin πx

a
sin

πy

b



CHAPTER

8Columns

A large proportion of an aircraft’s structure comprises thin webs stiffened by slender longerons or
stringers. Both are susceptible to failure by buckling at a buckling stress or critical stress, which is
frequently below the limit of proportionality and seldom appreciably above the yield stress of the
material. Clearly, for this type of structure, buckling is the most critical mode of failure so that the
prediction of buckling loads of columns, thin plates, and stiffened panels is extremely important in
aircraft design. In this chapter, we consider the buckling failure of all these structural elements and also
the flexural–torsional failure of thin-walled open tubes of low torsional rigidity.
Two types of structural instability arise: primary and secondary. The former involves the complete

element, there being no change in cross-sectional area, while the wavelength of the buckle is of the
same order as the length of the element. Generally, solid and thick-walled columns experience this type
of failure. In the latter mode, changes in cross-sectional area occur and the wavelength of the buckle is
of the order of the cross-sectional dimensions of the element. Thin-walled columns and stiffened plates
may fail in this manner.

8.1 EULER BUCKLING OF COLUMNS
The first significant contribution to the theory of the buckling of columns was made as early as 1744
by Euler. His classical approach is still valid, and likely to remain so, for slender columns possessing
a variety of end restraints. Our initial discussion is therefore a presentation of the Euler theory for the
small elastic deflection of perfect columns. However, we investigate, first, the nature of buckling and
the difference between theory and practice.
It is common experience that if an increasing axial compressive load is applied to a slender column,

there is a value of the load at which the column will suddenly bow or buckle in some unpredetermined
direction. This load is patently the buckling load of the column or something very close to the buckling
load. Clearly, this displacement implies a degree of asymmetry in the plane of the buckle caused by
geometrical and/or material imperfections of the column and its load. However, in our theoretical
stipulation of a perfect column in which the load is applied precisely along the perfectly straight
centroidal axis, there is perfect symmetry so that, theoretically, there can be no sudden bowing or
buckling. Therefore, we require a precise definition of buckling load, which may be used in our analysis
of the perfect column.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00008-7 253
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If the perfect column of Fig. 8.1 is subjected to a compressive load P, only shortening of the column
occurs no matter what the value of P. However, if the column is displaced a small amount by a lateral
load F, then, at values of P below the critical or buckling load, PCR, removal of F results in a return
of the column to its undisturbed position, indicating a state of stable equilibrium. At the critical load,
the displacement does not disappear, and, in fact, the column will remain in any displaced position as
long as the displacement is small. Thus, the buckling load PCR is associated with a state of neutral
equilibrium. For P>PCR, enforced lateral displacements increase and the column is unstable.
Consider the pin-ended column AB of Fig. 8.2. We assume that it is in the displaced state of neutral

equilibrium associated with buckling so that the compressive load P has attained the critical value PCR.
Simple bending theory (see Chapter 15) gives

EI
d2v

d z2
= −M

or

EI
d2v

d z2
= −PCRv (8.1)

Fig. 8.1

Definition of buckling load for a perfect column.

Fig. 8.2

Determination of buckling load for a pin-ended column.
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so that the differential equation of bending of the column is

d2v

d z2
+ PCR
EI
v= 0 (8.2)

The well-known solution of Eq. (8.2) is

v= Acosμz+B sinμz (8.3)

where μ2=PCR/EI and A and B are unknown constants. The boundary conditions for this particular
case are v=0 at z=0 and l. Thus, A=0 and

B sinμ l = 0
For a nontrivial solution (i.e., v 
=0), then

sinμ l = 0 or μ l = nπ where n= 1,2,3, . . .
giving

PCRl2

EI
= n2π2

or

PCR = n2π2EI

l2
(8.4)

Note that Eq. (8.3) cannot be solved for v no matter how many of the available boundary conditions are
inserted. This is to be expected, since the neutral state of equilibrium means that v is indeterminate.
The smallest value of buckling load—in other words, the smallest value of P which can maintain

the column in a neutral equilibrium state—is obtained by substituting n=1 in Eq. (8.4). Hence,

PCR = π2EI

l2
(8.5)

Other values of PCR corresponding to n=2, 3, . . . , are

PCR = 4π2EI

l2
,
9π2EI

l2
, . . .

These higher values of buckling load cause more complex modes of buckling such as those shown in
Fig. 8.3. The different shapes may be produced by applying external restraints to a very slender column
at the points of contraflexure to prevent lateral movement. If no restraints are provided, then these forms
of buckling are unstable and have little practical meaning.
The critical stress, σCR, corresponding to PCR, is, from Eq. (8.5)

σCR = π2E

(l/r)2
, (8.6)

where r is the radius of gyration of the cross-sectional area of the column. The term l/r is known as the
slenderness ratio of the column. For a column that is not doubly symmetrical, r is the least radius of
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Fig. 8.3

Buckling loads for different buckling modes of a pin-ended column.

gyration of the cross section since the column will bend about an axis about which the flexural rigidity
EI is least. Alternatively, if buckling is prevented in all but one plane, then EI is the flexural rigidity in
that plane.
Equations (8.5) and (8.6) may be written in the form

PCR = π2EI

l2e
(8.7)

and

σCR = π2E

(le/r)2
, (8.8)

where le is the effective length of the column. This is the length of a pin-ended column that would have
the same critical load as that of a column of length l, but with different end conditions. The determination
of critical load and stress is carried out in an identical manner to that for the pin-ended column except
that the boundary conditions are different in each case. Table 8.1 gives the solution in terms of effective
length for columns having a variety of end conditions. In addition, the boundary conditions referred
to the coordinate axes of Fig. 8.2 are quoted. The last case in Table 8.1 involves the solution of a
transcendental equation; this is most readily accomplished by a graphical method.
Let us now examine the buckling of the perfect pin-ended column of Fig. 8.2 in greater detail. We

have shown, in Eq. (8.4), that the column will buckle at discrete values of axial load and that associated
with each value of buckling load there is a particular buckling mode (Fig. 8.3). These discrete values of
buckling load are called eigenvalues, their associated functions (in this case v=B sinnπ z/l) are called
eigenfunctions, and the problem itself is called an eigenvalue problem.
Further, suppose that the lateral load F in Fig. 8.1 is removed. Since the column is perfectly straight,

homogeneous and loaded exactly along its axis, it will suffer only axial compression as P is increased.
This situation, theoretically, would continue until yielding of the material of the column occurred.

Table 8.1

Ends le/ l Boundary Conditions

Both pinned 1.0 v=0 at z=0 and l

Both fixed 0.5 v=0 at z=0 and z= l, dv/dz=0 at z= l
One fixed, the other free 2.0 v=0 and dv/dz=0 at z=0
One fixed, the other pinned 0.6998 dv/dz=0 at z=0, v=0 at z= l and z=0
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Fig. 8.4

Behavior of a perfect pin-ended column.

However, as we have seen, for values of P below PCR the column is in stable equilibrium, whereas for
P>PCR the column is unstable. A plot of load against lateral deflection at midheight would therefore
have the form shown in Fig. 8.4, where, at the point P=PCR, it is theoretically possible for the col-
umn to take one of three deflection paths. Thus, if the column remains undisturbed, the deflection at
midheight would continue to be zero but unstable (i.e., the trivial solution of Eq. (8.3), v=0), or, if
disturbed, the column would buckle in either of two lateral directions; the point at which this possible
branching occurs is called a bifurcation point; further bifurcation points occur at the higher values of
PCR(4π2EI/l2,9π2EI/l2, . . .).

Example 8.1
A uniform column of length L and flexural stiffness EI is simply supported at its ends and has an
additional elastic support at midspan. This support is such that if a lateral displacement vc occurs at this
point, a restoring force kvc is generated at the point. Derive an equation giving the buckling load of the
column. If the buckling load is 4π2EI/L2, find the value of k. Also, if the elastic support is infinitely
stiff, show that the buckling load is given by the equation tan λL/2=λL/2, where λ=√

P/EI .

The column is shown in its displaced position in Fig. 8.5. The bending moment at any section of the
column is given by

M = Pv− kvc
2
z

so that, by comparison with Eq. (8.1),

EI
d2v

d z2
= −Pv+ kvc

2
z
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Fig. 8.5

Column of Example 8.1.

giving

d2v

d z2
+ λ2v= kvc

2EI
z (i)

The solution of Eq. (i) is of standard form and is

v= Acosλz+B sinλz+ kvc
2P
z

The constants A and B are found using the boundary conditions of the column which are: v=0, when
z=0; v=vc, when z=L/2; and (dv/dz)=0, when z=L/2.
From the first of these, A=0, while from the second

B= vc
sin(λL/2)

(
1− kλ

4P

)
The third boundary condition gives, since vc 
=0, the required equation; that is,(

1− kL

4P

)
cos

λL

2
+ k

2Pλ
sin

λL

2
= 0

Rearranging

P = kL

4

(
1− tan(λL/2)

λL/2

)

If P (buckling load)=4π2EI/L2, then λL/2=π so that k=4P/L. Finally, if k→∞

tan
λL

2
= λL

2
(ii)
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Note that Eq. (ii) is the transcendental equation, which would be derived when determining the buckling
load of a column of length L/2, built in at one end and pinned at the other.

8.2 INELASTIC BUCKLING
We have shown that the critical stress, Eq. (8.8), depends only on the elastic modulus of the material
of the column and the slenderness ratio l/r. For a given material, the critical stress increases as the
slenderness ratio decreases—in other words, as the column becomes shorter and thicker. A point is then
reached when the critical stress is greater than the yield stress of the material so that Eq. (8.8) is no
longer applicable. For mild steel, this point occurs at a slenderness ratio of approximately 100, as shown
in Fig. 8.6. We therefore require some alternative means of predicting column behavior at low values
of slenderness ratio.
It was assumed in the derivation of Eq. (8.8) that the stresses in the column remained within the

elastic range of the material so that the modulus of elasticity E(=dσ /dε) was constant. Above the elastic
limit dσ /dε depends on the value of stress and whether the stress is increasing or decreasing. Thus, in
Fig. 8.7, the elastic modulus at the point A is the tangent modulus Et if the stress is increasing but E if
the stress is decreasing.
Consider a column having a plane of symmetry and subjected to a compressive load P such that the

direct stress in the column P/A is above the elastic limit. If the column is given a small deflection, v, in
its plane of symmetry, then the stress on the concave side increases, whereas the stress on the convex
side decreases. Thus, in the cross section of the column shown in Fig. 8.8(a), the compressive stress
decreases in the area A1 and increases in the area A2, whereas the stress on the line nn is unchanged.
Since these changes take place outside the elastic limit of the material, we see, from our remarks in the
previous paragraph, that the modulus of elasticity of the material in the area A1 is E, while that in A2
is Et . The homogeneous column now behaves as if it were nonhomogeneous, with the result that the

Fig. 8.6

Critical stress–slenderness ratio for a column.
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Fig. 8.7

Elastic moduli for a material stressed above the elastic limit.

Fig. 8.8

Determination of reduced elastic modulus.

stress distribution is changed to the form shown in Fig. 8.8(b); the linearity of the distribution follows
from an assumption that plane sections remain plane.
As the axial load is unchanged by the disturbance

d1∫
0

σx dA=
d2∫
0

σv dA (8.9)
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Also, P is applied through the centroid of each end section a distance e from nn so that

d1∫
0

σx(y1+ e)dA+
d2∫
0

σv(y2− e)dA= −Pv (8.10)

From Fig. 8.8(b),

σx = σ1

d1
y1 σv = σ2

d2
y2 (8.11)

The angle between two close, initially parallel, sections of the column is equal to the change in slope
d2v/dz2 of the column between the two sections. This, in turn, must be equal to the angle δφ in the strain
diagram of Fig. 8.8(c). Hence,

d2v

d z2
= σ1

Ed1
= σ2

Etd2
(8.12)

and Eq. (8.9) becomes, from Eqs. (8.11) and (8.12)

E
d2v

d z2

d1∫
0

y1dA−Et d
2v

d z2

d2∫
0

y2 dA= 0 (8.13)

Further, in a similar manner, from Eq. (8.10)

d2v

d z2

⎛
⎝E d1∫

0

y21 dA+Et
d2∫
0

y22 dA

⎞
⎠+ e d

2v

d z2

⎛
⎝E d1∫

0

y1 dA−Et
d2∫
0

y2 dA

⎞
⎠= −Pv (8.14)

The second term on the left-hand side of Eq. (8.14) is zero from Eq. (8.13). Therefore, we have

d2v

d z2
(EI1+EtI2) = −Pv (8.15)

in which

I1 =
d1∫
0

y21 dA and I2 =
d2∫
0

y22 dA

the second moments of area about nn of the convex and concave sides of the column, respectively.
Putting

ErI = EI1+EtI2
or

Er = E I1
I

+Et I2
I
, (8.16)
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where Er is known as the reduced modulus, gives

ErI
d2v

d z2
+Pv = 0

Comparing this with Eq. (8.2), we see that if P is the critical load PCR, then

PCR = π2ErI

l2e
(8.17)

and

σCR = π2Er
(le/r)2

(8.18)

The preceding method for predicting critical loads and stresses outside the elastic range is known as the
reduced modulus theory. From Eq. (8.13), we have

E

d1∫
0

y1 dA−Et
d2∫
0

y2 dA= 0 (8.19)

which, together with the relationship d=d1+d2, enables the position of nn to be found.
It is possible that the axial load P is increased at the time of the lateral disturbance of the column

such that there is no strain reversal on its convex side. Therefore, the compressive stress increases over
the complete section so that the tangent modulus applies over the whole cross section. The analysis is
then the same as that for column buckling within the elastic limit except that Et is substituted for E.
Hence, the tangent modulus theory gives

PCR = π2EtI

l2e
(8.20)

and

σCR = π2Et
(le/r2)

(8.21)

By a similar argument, a reduction in P could result in a decrease in stress over the whole cross
section. The elastic modulus applies in this case, and the critical load and stress are given by the standard
Euler theory, namely, Eqs. (8.7) and (8.8).
In Eq. (8.16), I1 and I2 are together greater than I , while E is greater than Et . It follows that the

reduced modulus Er is greater than the tangent modulus Et . Consequently, buckling loads predicted by
the reduced modulus theory are greater than buckling loads derived from the tangent modulus theory, so
that although we have specified theoretical loading situations where the different theories would apply,
there still remains the difficulty of deciding which should be used for design purposes.
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Extensive experiments carried out on aluminium alloy columns by the aircraft industry in the 1940s
showed that the actual buckling load was approximately equal to the tangent modulus load. Shanley
(1947) explained that for columns with small imperfections, increases of both axial load and bending
occur simultaneously. He then showed analytically that after the tangent modulus load is reached, the
strain on the concave side of the column increases rapidly, while that on the convex side decreases slowly.
The large deflection corresponding to the rapid strain increase on the concave side, which occurs soon
after the tangent modulus load is passed, means that it is only possible to exceed the tangent modulus
load by a small amount. It follows that the buckling load of columns is givenmost accurately for practical
purposes by the tangent modulus theory.
Empirical formulae have been used extensively to predict buckling loads, although in view of the

close agreement between experiment and the tangent modulus theory, they would appear unnecessary.
Several formulae are in use; for example, the Rankine, Straight-line, and Johnson’s parabolic formulae
are given in many books on elastic stability [Ref. 1].

8.3 EFFECT OF INITIAL IMPERFECTIONS
Obviously, it is impossible in practice to obtain a perfectly straight homogeneous column and to ensure
that it is exactly axially loaded. An actual column may be bent with some eccentricity of load. Such
imperfections influence to a large degree the behavior of the column which, unlike the perfect column,
begins to bend immediately the axial load is applied.
Let us suppose that a column, initially bent, is subjected to an increasing axial load P as shown in

Fig. 8.9. In this case, the bending moment at any point is proportional to the change in curvature of the
column from its initial bent position. Thus,

EI
d2v

d z2
−EI d

2v0
d z2

−Pv (8.22)

which, on rearranging, becomes

d2v

d z2
+ λ2v= d2v0

dz2
(8.23)

Fig. 8.9

Initially bent column.
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where λ2=P/EI . The final deflected shape, v, of the column depends on the form of its unloaded shape,
v0. Assuming that

v0 =
∞∑
n=1
An sin

nπ z

l
(8.24)

and substituting in Eq. (8.23), we have

d2v

dz2
+ λ2v= −π2

l2

∞∑
n=1
n2An sin

nπ z

l

The general solution of this equation is

v= Bcosλz+D sinλz+
∞∑
n=1

n2An
n2− α

sin
nπ z

l

where B and D are constants of integration and α=λ2l2/π2. The boundary conditions are v=0 at z=0
and l, giving B=D=0, from which

v=
∞∑
n=1

n2An
n2− α

sin
nπ z

l
(8.25)

Note that in contrast to the perfect column, we are able to obtain a nontrivial solution for deflection.
This is to be expected, since the column is in stable equilibrium in its bent position at all values of P.
An alternative form for α is

α = Pl2

π2EI
= P

PCR
(see Eq. (8.5))

Thus, α is always less than one and approaches unity when P approaches PCR so that the first term in
Eq. (8.25) usually dominates the series. A good approximation, therefore, for deflection when the axial
load is in the region of the critical load is

v= A1
1− α

sin
π z

l
(8.26)

or at the center of the column, where z= l/2

v= A1
1−P/PCR

(8.27)

in which A1 is seen to be the initial central deflection. If central deflections δ(=v−A1) are measured
from the initially bowed position of the column, then from Eq. (8.27) we obtain

A1
1−P/PCR

−A1 = δ
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which gives on rearranging

δ = PCR δ

P
−A1 (8.28)

and we see that a graph of δ plotted against δ/P has a slope, in the region of the critical load, equal to
PCR and an intercept equal to the initial central deflection. This is the well known Southwell plot for
the experimental determination of the elastic buckling load of an imperfect column.
Timoshenko [Ref. 1] also showed that Eq. (8.27) may be used for a perfectly straight column with

small eccentricities of column load.

Example 8.2
The pin-jointed column shown in Fig. 8.10 carries a compressive load P applied eccentrically at a
distance e from the axis of the column. Determine the maximum bending moment in the column.

The bending moment at any section of the column is given by

M = P(e+ v)
Then, by comparison with Eq. (8.1),

EI
d2v

dz2
= −P(e+ v)

giving

d2v

dz2
+ μ2v= −Pe

EI
(μ2 = P/EI) (i)

Fig. 8.10

Eccentrically loaded column of Example 8.2.
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The solution of Eq. (i) is of standard form and is

v= Acosμz+B sinμz− e
The boundary conditions are: v=0, when z=0 and (dv/dz)=0, when z=L/2.
From the first of these A=e, while from the second

B= e tan μL

2

The equation for the deflected shape of the column is then

v= e
[
cosμ(z− L/2)
cosμL/2

− 1
]

The maximum value of v occurs at midspan, where z=L/2; that is,

vmax = e
(
sec

μL

2
− 1
)

The maximum bending moment is given by

M(max) = Pe+Pvmax
so that

M(max) = Pesec μL

2

8.4 STABILITY OF BEAMS UNDER TRANSVERSE
AND AXIAL LOADS

Stresses and deflections in a linearly elastic beam subjected to transverse loads as predicted by simple
beam theory are directly proportional to the applied loads. This relationship is valid if the deflections
are small such that the slight change in geometry produced in the loaded beam has an insignificant
effect on the loads themselves. This situation changes drastically when axial loads act simultaneously
with the transverse loads. The internal moments, shear forces, stresses, and deflections then become
dependent on the magnitude of the deflections as well as the magnitude of the external loads. They are
also sensitive, as we observed in the previous section, to beam imperfections such as initial curvature
and eccentricity of axial load. Beams supporting both axial and transverse loads are sometimes known
as beam-columns or simply as transversely loaded columns.
First, we consider the case of a pin-ended beam carrying a uniformly distributed load of intensity

w per unit length and an axial load P as shown in Fig. 8.11. The bending moment at any section of the
beam is

M = Pv+ wlz

2
− wz2

2
= −EI d

2v

dz2



8.4 Stability of Beams under Transverse and Axial Loads 267

Fig. 8.11

Bending of a uniformly loaded beam-column.

giving

d2v

dz2
+ P

EI
v= w

2EI
(z2− lz) (8.29)

The standard solution of Eq. (8.29) is

v= Acosλz+B sinλz+ w

2P

(
z2− lz− 2

λ2

)
,

where A and B are unknown constants and λ2=P/EI . Substituting the boundary conditions v=0 at
z=0 and l gives

A= w

λ2P
B= w

λ2P sinλl
(l− cosλl )

so that the deflection is determinate for any value of w and P and is given by

v= w

λ2P

[
cosλz+

(
1− cosλl
sinλl

)
sinλz

]
+ w

2P

(
z2− lz− 2

λ2

)
(8.30)

In beamcolumns, as in beams,we are primarily interested inmaximumvalues of stress anddeflection.
For this particular case, the maximum deflection occurs at the center of the beam and is, after some
transformation of Eq. (8.30),

vmax = w

λ2P

(
sec

λl

2
− 1
)

− wl2

8P
(8.31)

The corresponding maximum bending moment is

Mmax = −Pvmax− wl2

8

or, from Eq. (8.31)

Mmax = w

λ2

(
1− sec λl

2

)
(8.32)
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We may rewrite Eq. (8.32) in terms of the Euler buckling load PCR=π2EI/l2 for a pin-ended column.
Hence,

Mmax = wl2

π2

PCR
P

(
1− sec π

2

√
P

PCR

)
(8.33)

As P approaches PCR, the bending moment (and deflection) becomes infinite. However, the preceding
theory is based on the assumption of small deflections (otherwise, d2v/dz2 would not be a close approxi-
mation for curvature) so that such a deduction is invalid. The indication is, though, that large deflections
will be produced by the presence of a compressive axial load no matter how small the transverse load
might be.
Now, let us consider the beam-column of Fig. 8.12 with hinged ends carrying a concentrated load

W at a distance a from the right-hand support. For

z ≤ l− a EI
d2v

dz2
= −M = −Pv− Waz

l
(8.34)

and for

z ≥ l− a EI
d2v

dz2
= −M = −Pv− W

l
(l− a)(l− z) (8.35)

Writing

λ2 = P

EI

Eq. (8.34) becomes

d2v

dz2
+ λ2v= −Wa

EIl
z

the general solution of which is

v= Acosλz+B sinλz− Wa

Pl
z (8.36)

Fig. 8.12

Beam-column supporting a point load.
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Similarly, the general solution of Eq. (8.35) is

v= C cosλz+D sinλz− W

Pl
(l− a)(l− z) (8.37)

where A,B,C, and D are constants which are found from the boundary conditions as follows.
When z=0, v=0, so from Eq. (8.36) A=0. At z= l, v=0 giving, from Eq. (8.37), C=−D tanλl.

At the point of application of the load, the deflection and slope of the beam given by Eqs. (8.36) and
(8.37) must be the same. Hence, equating deflections

B sinλ(l− a) − Wa

Pl
(l− a) = D[sinλ(l− a) − tanλl cosλ(l− a)]− Wa

Pl
(l− a)

and equating slopes

Bλcosλ(l− a) − Wa

Pl
= Dλ[cosλ(l− a) − tanλl sinλ(l− a)]+ W

Pl
(l− a)

Solving the preceding equations for B and D and substituting for A, B, C, and D in Eqs. (8.36) and
(8.37), we have

v= W sinλa

Pλsinλl
sinλz− Wa

Pl
z for z ≤ l− a (8.38)

v= W sinλ(l− a)
Pλsinλl

sinλ(l− z) − W

Pl
(l− a)(l− z) for z ≥ l− a (8.39)

These equations for the beam-column deflection enable the bending moment and resulting bending
stresses to be found at all sections.
A particular case arises when the load is applied at the center of the span. The deflection curve is

then symmetrical with a maximum deflection under the load of

vmax = W

2Pλ
tan

λl

2
− Wl

4p

Finally, we consider a beam-column subjected to end moments MA and MB in addition to an axial
load P (Fig. 8.13). The deflected form of the beam-column may be found by using the principle of
superposition and the results of the previous case. First, we imagine that MB acts alone with the axial
load P. If we assume that the point load W moves toward B and simultaneously increases so that the
productWa=constant=MB, then, in the limit as a tends to zero, we have the momentMB applied at B.

Fig. 8.13

Beam-column supporting end moments.
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The deflection curve is then obtained from Eq. (8.38) by substituting λa for sin λa (since λa is now
very small) and MB for Wa. Thus,

v= MB
P

(
sinλz

sinλl
− z

l

)
(8.40)

In a similar way, we find the deflection curve corresponding toMA acting alone. Suppose thatW moves
toward A such that the product W(l− a)=constant=MA. Then, as (l− a) tends to zero, we have
sinλ(l− a)=λ(l− a), and Eq. (8.39) becomes

v= MA
P

[
sinλ(l− z)
sinλl

− (l− z)
l

]
(8.41)

The effect of the two moments acting simultaneously is obtained by superposition of the results of
Eqs. (8.40) and (8.41). Hence, for the beam-column of Fig. 8.13,

v= MB
P

(
sinλz

sinλl
− z

l

)
+ MA
P

[
sinλ(l− z)
sinλl

− (l− z)
l

]
(8.42)

Equation (8.42) is also the deflected form of a beam-column supporting eccentrically applied end loads
at A and B. For example, if eA and eB are the eccentricities of P at the ends A and B, respectively, then
MA=PeA,MB=PeB, giving a deflected form of

v= eB
(
sinλz

sinλl
− z

l

)
+ eA

[
sinλ(l− z)
sinλl

− (l− z)
l

]
(8.43)

Other beam-column configurations featuring a variety of end conditions and loading regimes may
be analyzed by a similar procedure.

8.5 ENERGY METHOD FOR THE CALCULATION
OF BUCKLING LOADS IN COLUMNS

The fact that the total potential energy of an elastic body possesses a stationary value in an equilibrium
state may be used to investigate the neutral equilibrium of a buckled column. In particular, the energy
method is extremely useful when the deflected form of the buckled column is unknown and has to be
“guessed”.
First, we shall consider the pin-ended column shown in its buckled position in Fig. 8.14. The internal

or strain energy U of the column is assumed to be produced by bending action alone and is given by
the well-known expression

U =
l∫
0

M2

2EI
dz (8.44)
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Fig. 8.14

Shortening of a column due to buckling.

or alternatively, since EI d2v/dz2=−M,

U = EI

2

l∫
0

(
d2v

dz2

)2
dz (8.45)

The potential energy V of the buckling load PCR, referred to the straight position of the column as the
datum, is then

V = −PCRδ

where δ is the axial movement of PCR caused by the bending of the column from its initially straight
position. By reference to Fig. 7.15(b) and Eq. (7.41), we see that

δ = 1

2

l∫
0

(
dv

dz

)2
dz

giving

V = −PCR
2

l∫
0

(
dv

dz

)2
dz (8.46)

The total potential energy of the column in the neutral equilibrium of its buckled state is, therefore,

U +V =
l∫
0

M2

2EI
dz− PCR

2

l∫
0

(
dv

dz

)2
dz (8.47)

or, using the alternative form of U from Eq. (8.45),

U +V = EI

2

l∫
0

(
d2v

dz2

)2
dz− PCR

2

l∫
0

(
dv

dz

)2
dz (8.48)
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We have seen in Chapter 7 that exact solutions of plate bending problems are obtainable by energy
methodswhen the deflected shape of the plate is known.An identical situation exists in the determination
of critical loads for column and thin plate buckling modes. For the pin-ended column under discussion,
a deflected form of

v=
∞∑
n=1
An sin

nπ z

l
(8.49)

satisfies the boundary conditions of

(v)z=0 = (v)z=l = 0
(
d2v

dz2

)
z=0

=
(
d2v

dz2

)
z=l

= 0

and is capable, within the limits for which it is valid and if suitable values for the constant coefficients
An are chosen, of representing any continuous curve.We are, therefore, in a position to find PCR exactly.
Substituting Eq. (8.49) into Eq. (8.48) gives

U +V = EI

2

l∫
0

(π

l

)4( ∞∑
n=1
n2An sin

nπ z

l

)2
dz

− PCR
2

l∫
0

(π

l

)2( ∞∑
n=1
nAn cos

nπ z

l

)2
dz

(8.50)

The product terms in both integrals of Eq. (8.50) disappear on integration, leaving only integrated values
of the squared terms. Thus,

U +V = π4EI

4l3

∞∑
n=1
n4A2n− π2PCR

4l

∞∑
n=1
n2A2n (8.51)

Assigning a stationary value to the total potential energy of Eq. (8.51) with respect to each coefficient
An in turn, then taking An as being typical, we have

∂(U +V)

∂An
= π4EIn4An

2l3
− π2PCRn2An

2l
= 0

from which

PCR = π2EIn2

l2
as before.

We see that each term in Eq. (8.49) represents a particular deflected shape with a corresponding
critical load. Hence, the first term represents the deflection of the column shown in Fig. 8.14, with
PCR=π2EI/l2. The second and third terms correspond to the shapes shown in Fig. 8.3, having critical
loads of 4π2EI/l2 and 9π2EI/l2 and so on. Clearly, the columnmust be constrained to buckle into these
more complex forms. In other words, the column is being forced into an unnatural shape, is consequently
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stiffer, and offers greater resistance to buckling, as we observe from the higher values of critical load.
Such buckling modes, as stated in Section 8.1, are unstable and are generally of academic interest only.
If the deflected shape of the column is known, it is immaterial which of Eqs. (8.47) or (8.48) is used

for the total potential energy. However, when only an approximate solution is possible, Eq. (8.47) is
preferable, since the integral involving bending moment depends on the accuracy of the assumed form
of v, whereas the corresponding term in Eq. (8.48) depends on the accuracy of d2v/dz2. Generally, for
an assumed deflection curve, v is obtained much more accurately than d2v/dz2.
Suppose that the deflection curve of a particular column is unknown or extremely complicated. We

then assume a reasonable shape which satisfies, as far as possible, the end conditions of the column and
the pattern of the deflected shape (Rayleigh–Ritz method). Generally, the assumed shape is in the form
of a finite series involving a series of unknown constants and assumed functions of z. Let us suppose
that v is given by

v= A1 f1(z) +A2 f2(z) +A3 f3(z)
Substitution in Eq. (8.47) results in an expression for total potential energy in terms of the critical load
and the coefficients A1, A2, and A3 as the unknowns. Assigning stationary values to the total potential
energywith respect toA1,A2, andA3 in turn produces three simultaneous equations fromwhich the ratios
A1/A2, A1/A3, and the critical load are determined. Absolute values of the coefficients are unobtainable
since the deflections of the column in its buckled state of neutral equilibrium are indeterminate.
As a simple illustration, consider the column shown in its buckled state in Fig. 8.15. An approximate

shape may be deduced from the deflected shape of a tip-loaded cantilever. Thus,

v= v0z2

2l3
(3l− z)

This expression satisfies the end-conditions of deflection—that is, v=0 at z=0 and v=v0 at z= l.
In addition, it satisfies the conditions that the slope of the column is zero at the built-in end and
that the bending moment—d2v/dz2—is zero at the free end. The bending moment at any section is
M=PCR(v0− v) so that substitution for M and v in Eq. (8.47) gives

U +V = P2CRv
2
0

2EI

l∫
0

(
1− 3z2

2l2
+ z3

2l3

)2
dz− PCR

2

l∫
0

(
3v0
2l3

)3
z2(2l− z)2 dz

Fig. 8.15

Buckling load for a built-in column by the energy method.
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Integrating and substituting the limits, we have

U +V = 17

35

P2CRv
2
0l

2EI
− 3

5
PCR

v20
l

Hence,

∂(U +V)

∂v0
= 17

35

P2CRv0l

EI
− 6PCRv0

5l
= 0

from which

PCR = 42EI

17l2
= 2.471EI

l2

This value of critical load compares with the exact value (see Table 8.1) of π2EI/4l2=2.467EI/l2;
the error, in this case, is seen to be extremely small. Approximate values of critical load obtained by
the energy method are always greater than the correct values. The explanation lies in the fact that an
assumed deflected shape implies the application of constraints in order to force the column to take up
an artificial shape. This, as we have seen, has the effect of stiffening the column, with a consequent
increase in critical load.
It will be observed that the solution for the preceding example may be obtained by simply equating

the increase in internal energy (U) to the work done by the external critical load (−V ). This is always
the case when the assumed deflected shape contains a single unknown coefficient, such as v0 in the
preceding example.

8.6 FLEXURAL–TORSIONAL BUCKLING
OF THIN-WALLED COLUMNS

In some instances, thin-walled columns of open cross section do not buckle in bending as predicted by the
Euler theory but twist without bending, or bend and twist simultaneously, producing flexural–torsional
buckling. The solution to this type of problem relies on the theory for the torsion of open section beams
subjected to warping (axial) restraint. Initially, however, we shall establish a useful analogy between
the bending of a beam and the behavior of a pin-ended column.
The bending equation for a simply supported beam, carrying a uniformly distributed load of intensity

wy and having Cx and Cy as principal centroidal axes is

EIxx
d4v

dz4
= wy (see Chapter 15) (8.52)

Also, the equation for the buckling of a pin-ended column about the Cx axis is (see Eq. (8.1))

EIxx
d2v

dz2
= −PCRv (8.53)
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Differentiating Eq. (8.53) twice with respect to z gives

EIxx
d4v

dz4
= −PCR d

2v

dz2
(8.54)

Comparing Eqs. (8.52) and (8.54), we see that the behavior of the column may be obtained by consider-
ing it as a simply supported beam carrying a uniformly distributed load of intensity wy given by

wy = −PCR d
2v

dz2
(8.55)

Similarly, for buckling about the Cy axis

wx = −PCR d
2u

dz2
(8.56)

Consider now a thin-walled column having the cross section shown in Fig. 8.16 and suppose that
the centroidal axes Cxy are principal axes (see Chapter 15); S(xS, yS) is the shear center of the column
(see Chapter 16), and its cross-sectional area is A. Due to the flexural–torsional buckling produced, say,
by a compressive axial load P, the cross section will suffer translations u and v parallel to Cx and Cy,
respectively, and a rotation θ , positive anticlockwise, about the shear center S. Thus, due to translation,
C and S move to C′ and S′, and then, due to rotation about S′, C′ moves to C′′. The total movement of
C,uC, in the x direction is given by

uc = u+C′D= u+C′C′′ sinα (S′Ĉ′C′′ � 90◦)
But

C′C′′ = C′S′θ = CSθ
Hence

uC = u+ θ CSsinα = u+ ySθ (8.57)

Also, the total movement of C in the y direction is

vC = v−DC′′ = v−C′C′′ cosα = v− θ CScosα

so that

vC = v− xsθ (8.58)

Since at this particular cross section of the column the centroidal axis has been displaced, the axial load
P produces bending moments about the displaced x and y axes given, respectively, by

Mx = PvC = P(v− xSθ) (8.59)

and

My = PuC = P(u+ ySθ) (8.60)
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Fig. 8.16

Flexural–torsional buckling of a thin-walled column.

From simple beam theory (Chapter 15)

EIxx
d2v

dz2
= −Mx = −P(v− xSθ) (8.61)

and

EIyy
d2u

dz2
= −My = −P(u+ ySθ), (8.62)

where Ixx and Iyy are the second moments of area of the cross section of the column about the principal
centroidal axes, E is Young’s modulus for the material of the column, and z is measured along the
centroidal longitudinal axis.
The axial load P on the column will, at any cross section, be distributed as a uniform direct stress σ .

Thus, the direct load on any element of length δs at a point B(xB,yB) is σ t ds acting in a direction
parallel to the longitudinal axis of the column. In a similar manner to the movement of C to C′′, the
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point B will be displaced to B′′. The horizontal movement of B in the x direction is then

uB = u+B′F = u+B′B′′ cosβ

But

B′B′′ = S′B′θ = SBθ

Hence

uB = u+ θSBcosβ

or

uB = u+ (yS− yB)θ (8.63)

Similarly, the movement of B in the y direction is

vB = v− (xS− xB)θ (8.64)

Therefore, fromEqs. (8.63) and (8.64) and referring toEqs. (8.55) and (8.56),we see that the compressive
load on the element δs at B, σ tδs, is equivalent to lateral loads

−σ tδs
d2

dz2
[u+ (yS− yB)θ ] in the x direction

and

−σ tδs
d2

dz2
[v− (xS− xB)θ ] in the y direction

The lines of action of these equivalent lateral loads do not pass through the displaced position S′ of the
shear center and, therefore, produce a torque about S′ leading to the rotation θ . Suppose that the element
δs at B is of unit length in the longitudinal z direction. The torque per unit length of the column δT(z)
acting on the element at B is then given by

δT(z) = −σ tδs
d2

dz2
[u+ (yS− yB)θ ](yS− yB)

+ σ tδs
d2

dz2
[v− (xS− xB)θ ](xS− xB) (8.65)

Integrating Eq. (8.65) over the complete cross section of the column gives the torque per unit length
acting on the column; that is,

T(z) = −
∫
Sect

σ t
d2u

dz2
( yS− yB)ds−

∫
Sect

σ t( yS− yB)2 d
2θ

dz2
ds

+
∫
Sect

σ t
d2v

dz2
(xS− xB)ds−

∫
Sect

σ t(xS− xB)2 d
2θ

dz2
ds (8.66)
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Expanding Eq. (8.66) and noting that σ is constant over the cross section, we obtain

T(z) = −σ
d2u

dz2
yS

∫
Sect

t ds+ σ
d2u

dz2

∫
Sect

tyB ds− σ
d2θ

dz2
y2S

∫
Sect

t ds

+ σ
d2θ

dz2
2yS

∫
Sect

tyB ds− σ
d2θ

dz2

∫
Sect

ty2B ds+ σ
d2v

dz2
xS

∫
Sect

t ds

− σ
d2v

dz2

∫
Sect

txB ds− σ
d2θ

dz2
x2S

∫
Sect

t ds+ σ
d2θ

dz2
2xS

∫
Sect

txB ds

− σ
d2θ

dz2

∫
Sect

tx2B ds

(8.67)

Equation (8.67) may be rewritten

T(z) = P
(
xS
d2v

dz2
− yS d

2u

dz2

)
− P

A

d2θ

dz2
(Ay2S+ Ixx +Ax2S+ Iyy) (8.68)

In Eq. (8.68), the term Ixx+ Iyy+A(x2S+y2S) is the polar second moment of area I0 of the column about
the shear center S. Thus, Eq. (8.68) becomes

T(z) = P
(
xS
d2v

dz2
− yS d

2u

dz2

)
− I0P

A

d2θ

dz2
(8.69)

Substituting for T(z) from Eq (8.69) in the general equation for the torsion of a thin-walled beam (see
Ref. 3) we have

E�
d4θ

dz4
−
(
GJ − I0P

A

)
d2θ

dz2
−PxS d

2v

dz2
+PyS d

2u

dz2
= 0 (8.70)

Equations (8.61), (8.62), and (8.70) form three simultaneous equationswhichmaybe solved to determine
the flexural–torsional buckling loads.
As an example, consider the case of a column of length L in which the ends are restrained against

rotation about the z axis and against deflection in the x and y directions; the ends are also free to rotate
about the x and y axes and are free to warp. Thus, u=v=θ =0 at z=0 and z=L. Also, since the column
is free to rotate about the x and y axes at its ends, Mx=My=0 at z=0 and z=L, and from Eqs. (8.61)
and (8.62)

d2v

dz2
= d2u

dz2
= 0 at z = 0 and z = L

Further, the ends of the column are free to warp so that

d2θ

dz2
= 0 at z = 0 and z = L
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An assumed buckled shape given by

u= A1 sin π z

L
v= A2 sin π z

L
θ = A3 sin π z

L
(8.71)

inwhichA1,A2, andA3 are unknown constants, satisfies the preceding boundary conditions. Substituting
for u,v, and θ from Eqs. (8.71) into Eqs. (8.61), (8.62), and (8.70), we have(

P− π2EIxx
L2

)
A2−PxSA3 = 0(

P− π2EIyy
L2

)
A1+PySA3 = 0

PySA1−PxSA2−
(

π2E�

L2
+GJ − I0

A
P

)
A3 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.72)

For nonzero values of A1, A2, and A3, the determinant of Eqs. (8.72) must equal zero; that is,∣∣∣∣∣∣
0 P− π2EIxx/L2 −PxS

P− π2EIyy/L2 0 PyS
PyS −PxS I0P/A− π2E�/L2−GJ

∣∣∣∣∣∣= 0 (8.73)

The roots of the cubic equation formed by the expansion of the determinant give the critical loads for
the flexural–torsional buckling of the column; clearly the lowest value is significant.
In the case where the shear center of the column and the centroid of area coincide—that is, the

column has a doubly symmetrical cross section—xS=yS=0, and Eqs. (8.61), (8.62), and (8.70) reduce,
respectively, to

EIxx
d2v

dz2
= −Pv (8.74)

EIyy
d2u

dz2
= −Pu (8.75)

E�
d4θ

dz4

(
GJ − I0P

A

)
d2θ

dz2
= 0 (8.76)

Equations (8.74), (8.75), and (8.76), unlike Eqs. (8.61), (8.62), and (8.70), are uncoupled and provide
three separate values of buckling load. Thus, Eqs. (8.74) and (8.75) give values for the Euler buckling
loads about the x and y axes, respectively, whereas Eq. (8.76) gives the axial load which would produce
pure torsional buckling; clearly the buckling load of the column is the lowest of these values. For the
column whose buckled shape is defined by Eqs. (8.71), substitution for v,u, and θ in Eqs. (8.74), (8.75),
and (8.76), respectively, gives

PCR(xx) = π2EIxx
L2

PCR(yy) = π2EIyy
L2

PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(8.77)
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Example 8.3
A thin-walled pin-ended column is 2m long and has the cross section shown in Fig. 8.17. If the ends
of the column are free to warp, determine the lowest value of axial load which will cause buckling, and
specify the buckling mode. Take E=75000N/mm2 and G=21000N/mm2.
Since the cross section of the column is doubly symmetrical, the shear center coincides with the

centroid of area, and xS=yS=0; Eqs. (8.74), (8.75), and (8.76) therefore apply. Further, the boundary
conditions are those of the column whose buckled shape is defined by Eqs. (8.71) so that the buckling
load of the column is the lowest of the three values given by Eqs. (8.77).
The cross-sectional area A of the column is

A= 2.5(2× 37.5+ 75) = 375mm2

The second moments of area of the cross section about the centroidal axes Cxy are (see Chapter 15),
respectively,

Ixx = 2× 37.5× 2.5× 37.52+ 2.5× 753/12= 3.52× 105mm4
Iyy = 2× 2.5× 37.53/12= 0.22× 105mm4

The polar second moment of area I0 is

I0 = Ixx + Iyy+A(x2S+ y2S) (see derivation of Eq. (8.69))

Fig. 8.17

Column section of Example 8.3.
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that is,

I0 = 3.52× 105+ 0.22× 105 = 3.74× 105mm4

The torsion constant J is obtained using Eq. (18.11) which gives

J = 2× 37.5× 2.53/3+ 75× 2.53/3= 781.3mm4

Finally, � is found to be (see Ref. 3)

� = 2.5× 37.53× 752/24= 30.9× 106mm6

Substituting the preceding values in Eqs. (8.77), we obtain

PCR(xx) = 6.5× 104N PCR(yy) = 0.41× 104N PCR(θ) = 2.22× 104N
The column will, therefore, buckle in bending about the Cy axis when subjected to an axial load of
0.41×104 N.
Equation (8.73) for the column whose buckled shape is defined by Eqs. (8.71) may be rewritten in

terms of the three separate buckling loads given by Eqs. (8.77). Thus,∣∣∣∣∣∣
0 P−PCR(xx) −PxS

P−PCR(yy) 0 PyS
PyS −PxS I0(P−PCR(θ))/A

∣∣∣∣∣∣= 0 (8.78)

If the column has, say, Cx as an axis of symmetry, then the shear center lies on this axis, and yS=0.
Equation (8.78) thereby reduces to∣∣∣∣P−PCR(xx) −PxS

−PxS I0(P−PCR(θ))/A

∣∣∣∣= 0 (8.79)

The roots of the quadratic equation formed by expanding Eq. (8.79) are the values of axial load, which
will produce flexural–torsional buckling about the longitudinal and x axes. If PCR(yy) is less than the
smallest of these roots, the column will buckle in pure bending about the y axis.

Example 8.4
A column of length 1m has the cross section shown in Fig. 8.18. If the ends of the column are pinned
and free to warp, calculate its buckling load; E=70 000N/mm2, G=30000N/mm2.
In this case, the shear center S is positioned on the Cx axis so that yS=0 and Eq. (8.79) applies. The

distance x̄ of the centroid of area C from the web of the section is found by taking first moments of area
about the web. Thus,

2(100+ 100+ 100)x̄ = 2× 2× 100× 50
which gives

x̄ = 33.3mm
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Fig. 8.18

Column section of Example 8.4.

The position of the shear center S is found using the method of Example 16.2; this gives
xS=−76.2mm. The remaining section properties are found by the methods specified in Example 8.3
and are listed next:

A =600mm2 Ixx=1.17× 106mm4 Iyy =0.67× 106mm4
I0=5.32× 106mm4 J =800mm4 �=2488× 106mm6

From Eq. (8.77)

PCR(yy) = 4.63× 105N PCR(xx) = 8.08× 105N PCR(θ) = 1.97× 105N
Expanding Eq. (8.79)

(P−PCR(xx))(P−PCR(θ))I0/A−P2x2S = 0 (i)

Rearranging Eq. (i)

P2(1−Ax2S/I0) −P(PCR(xx) +PCR(θ)) +PCR(xx)PCR(θ) = 0 (ii)

Substituting the values of the constant terms in Eq. (ii), we obtain

P2− 29.13× 105P+ 46.14× 1010 = 0 (iii)

The roots of Eq. (iii) give two values of critical load, the lowest of which is

P = 1.68× 105N
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It can be seen that this value of flexural–torsional buckling load is lower than any of the uncoupled
buckling loads PCR(xx), PCR(yy), or PCR(θ); the reduction is due to the interaction of the bending and
torsional buckling modes.

Example 8.5
A thin-walled column has the cross section shown in Fig. 8.19, is of length L, and is subjected to an
axial load through its shear center S. If the ends of the column are prevented from warping and twisting,
determine the value of direct stress when failure occurs due to torsional buckling.

The torsion bending constant is found using the method described in (see Ref. 3). The position of
the shear center is given but is obvious by inspection. The swept area 2λAR,0 is determined as a function
of s, and its distribution is shown in Fig. 8.20. The center of gravity of the “wire” is found by taking
moments about the s axis.
Then,

2A′
R5td = td

(
d2

2
+ 5d2

4
+ 3d2

2
+ 5d2

4
+ d2

2

)
which gives

2A′
R = d2

Fig. 8.19

Section of column of Example 8.5.
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Fig. 8.20

Determination of torsion bending constant for column section of Example 8.5.

The torsion bending constant is then the “moment of inertia” of the “wire” and is

� = 2td 1
3
(d2)2+ td

3

(
d2

2

)2
× 2+ td

(
d2

2

)2

from which

� = 13

12
td5

Also, the torsion constant J is given by (see Section 3.4)

J =
∑ st3

3
= 5dt3

3

The shear center of the section and the centroid of area coincide so that the torsional buckling load is
given by Eq. (8.76). Rewriting this equation

d4θ

dz4
+ μ2

d2θ

dz2
= 0 (i)

where

μ2 = (σ I0−GJ)/E� (σ = P/A)

The solution of Eq. (i) is

θ = Acosμz+B sinμz+Cz+D (ii)
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The boundary conditions are θ =0 when z=0 and z=L, and since the warping is suppressed at the ends
of the beam,

dθ

dz
= 0 when z = 0 and z = L (see Eq. (17.19))

Putting θ =0 at z=0 in Eq. (ii)
0= A+D

or

A= −D
Also,

dθ

dz
= −μAsinμz+ μBcosμz+C

and since (dθ /dz)=0 at z=0,
C = −μB

When z=L, θ =0 so that, from Eq. (ii),
0= AcosμL+B sinμL+CL+D

which may be rewritten

0= B(sinμL− μL) +A(cosμL− 1) (iii)

Then for (dθ /dz)=0 at z=L,
0= μBcosμL− μAsinμL−μB

or

0= B(cosμL− 1) −AsinμL (iv)

Eliminating A from Eqs. (iii) and (iv)

0= B[2(1− cosμL) − μL sinμL] (v)

Similarly, in terms of the constant C

0= −C[2(1− cosμL) − μL sinμL] (vi)

or

B= −C
But B=−C/μ so that to satisfy both equations B=C=0 and

θ = Acosμz−A= A(cosμz− 1) (vii)
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Since θ =0 at z= l,
cosμL = 1

or

μL = 2nπ
Therefore,

μ2L2 = 4n2π2

or

σ I0−GJ
E�

= 4n2π2

L2

The lowest value of torsional buckling load corresponds to n=1 so that, rearranging the preceding,

σ = 1

I0

(
GJ + 4π2E�

L2

)
(viii)

The polar second moment of area I0 is given by

I0 = Ixx + Iyy (see Ref. 2)

that is,

I0 = 2
(
td d2+ td

3

3
)

+ 3td3

12
+ 2td d

2

4

which gives

I0 = 4ltd3

12

Substituting for I0, J , and � in Eq. (viii)

σ = 4

4ld3

(
sgt2+ 13π2Ed4

L2

)
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Problems
P.8.1 The system in Fig. P.8.1 consists of two bars, AB and BC, each of bending stiffness EI elastically hinged
together at B by a spring of stiffness K (i.e., bending moment applied by spring=K×change in slope across B).
Regarding A and C as simple pin-joints, obtain an equation for the first buckling load of the system. What are

the lowest buckling loads when (a) K→∞, (b) EI→∞. Note that B is free to move vertically.
Ans. μK/tanμ l.

Fig. P.8.1

P.8.2 A pin-ended column of length l and constant flexural stiffness EI is reinforced to give a flexural stiffness
4EI over its central half (see Fig. P.8.2).

Fig. P.8.2

Considering symmetric modes of buckling only, obtain the equation whose roots yield the flexural buckling
loads and solve for the lowest buckling load.

Ans. tanμ l/8=1/√2,P=24.2EI/l2
P.8.3 A uniform column of length l and bending stiffness EI is built-in at one end and free at the other and has
been designed so that its lowest flexural buckling load is P (see Fig. P.8.3).

Fig. P.8.3

Subsequently, it has to carry an increased load, and for this, it is provided with a lateral spring at the free end.
Determine the necessary spring stiffness k so that the buckling load becomes 4P.

Ans. k=4Pμ/(μ l− tanμ l ).



288 CHAPTER 8 Columns

P.8.4 A uniform, pin-ended column of length l and bending stiffness EI has an initial curvature such that the
lateral displacement at any point between the column and the straight line joining its ends is given by

v0 = a4z
l2

(l− z) (see Fig. P.8.4)

Show that the maximum bending moment due to a compressive end load P is given by

Mmax = − 8aP

(λl)2

(
sec

λl

2
− 1
)

where

λ2 = P/EI

Fig. P.8.4

P.8.5 The uniform pin-ended column shown in Fig. P.8.5 is bent at the center so that its eccentricity there is δ. If
the two halves of the column are otherwise straight and have a flexural stiffness EI, find the value of the maximum
bending moment when the column carries a compression load P.

Ans. −P 2δ
l

√
EI

P
tan

√
P

EI

l

2
.

Fig. P.8.5

P.8.6 A straight uniform column of length l and bending stiffness EI is subjected to uniform lateral loading
w/unit length. The end attachments do not restrict rotation of the column ends. The longitudinal compressive force
P has eccentricity e from the centroids of the end sections and is placed so as to oppose the bending effect of the
lateral loading, as shown in Fig. P.8.6. The eccentricity e can be varied and is to be adjusted to the value which, for
given values of P and w, will result in the least maximum bending moment on the column. Show that

e= (w/Pμ2) tan2μ l/4

where

μ2 = P/EI

Deduce the end moment which will give the optimum condition when P tends to zero.
Ans. wl2/16.
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Fig. P.8.6

P.8.7 The relation between stress σ and strain ε in compression for a certain material is

10.5× 106ε = σ + 21000
( σ

49000

)16
Assuming the tangent modulus equation to be valid for a uniform strut of this material, plot the graph of σb against
l/r, where σb is the flexural buckling stress, l the equivalent pin-ended length, and r the least radius of gyration of
the cross section.

Estimate the flexural buckling load for a tubular strut of this material, of 1.5 units outside diameter and 0.08
units wall thickness with effective length 20 units.

Ans. 14 454 force units.

P.8.8 A rectangular portal frame ABCD is rigidly fixed to a foundation at A and D and is subjected to a com-
pression load P applied at each end of the horizontal member BC (see Fig. P.8.8). If the members all have the same
bending stiffness EI, show that the buckling loads for modes which are symmetrical about the vertical center line
are given by the transcendental equation

λa

2
= −1

2

(a
b

)
tan

(
λa

2

)
where

λ2 = P/EI

Fig. P.8.8

P.8.9 A compression member (Fig. P.8.9) is made of circular section tube, diameter d, thickness t. The member
is not perfectly straight when unloaded, having a slightly bowed shape which may be represented by the expression

v = δ sin
(π z

l

)
Show that when the load P is applied, the maximum stress in the member can be expressed as

σmax = P

πdt

[
1+ 1

1− α

4δ

d

]
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Fig. P.8.9

where

α = P/Pe, Pe = π2EI/l2

Assume t is small compared with d so that the following relationships are applicable:

• Cross-sectional area of tube=πdt.
• Second moment of area of tube=πd3t/8.

P.8.10 Figure P.8.10 illustrates an idealized representation of part of an aircraft control circuit. A uniform, straight
bar of length a and flexural stiffness EI is built in at the end A and hinged at B to a link BC, of length b, whose
other end C is pinned so that it is free to slide along the line ABC between smooth, rigid guides. A, B, and C are
initially in a straight line, and the system carries a compression force P, as shown.

Fig. P.8.10

Assuming that the link BC has a sufficiently high flexural stiffness to prevent its buckling as a pin-ended strut,
show, by setting up and solving the differential equation for flexure of AB, that buckling of the system, of the type
illustrated in Fig. P.8.10, occurs when P has such a value that

tanλa= λ(a+ b)
where

λ2 = P/EI

P.8.11 A pin-ended column of length l has its central portion reinforced, the second moment of its area being I2,
while that of the end portions, each of length a, is I1. Use the energy method to determine the critical load of the
column, assuming that its center-line deflects into the parabola v=kz(l−z) and taking the more accurate of the
two expressions for the bending moment.

In the case where I2=1.6I1 and a=0.2l, find the percentage increase in strength due to reinforcement, and
compare it with the percentage increase in weight on the basis that the section’s radius of gyration is not altered.

Ans. PCR=14.96EI1/l2,52%,36%.
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P.8.12 A tubular column of length l is tapered in wall-thickness so that the area and the second moment of area
of its cross section decrease uniformly from A1 and I1 at its center to 0.2A1 and 0.2I1 at its ends.
Assuming a deflected center-line of parabolic form, and taking the more correct form for the bending moment,

use the energy method to estimate its critical load when tested between pin-center, in terms of the preceding data
and Young’s modulus E. Hence, show that the saving in weight by using such a column instead of one having the
same radius of gyration and constant thickness is about 15%.

Ans. 7.01EI1/l2.

P.8.13 Auniform column (Fig. P.8.13) of length l and bending stiffness EI is rigidly built in at end z=0 and simply
supported at end z= l. The column is also attached to an elastic foundation of constant stiffness k/unit length.

Fig. P.8.13

Representing the deflected shape of the column by a polynomial

v =
p∑
n=0
anη

n, where η = z/l

determine the form of this function by choosing a minimum number of terms p, such that all the kinematic
(geometric) and static boundary conditions are satisfied, allowing for one arbitrary constant only.

Using the result thus obtained, find an approximation to the lowest flexural buckling load PCR by the Rayleigh–
Ritz method.

Ans. PCR=21.05EI/l2+0.09kl2.
P.8.14 Figure P.8.14 shows the doubly symmetrical cross section of a thin-walled column with rigidly fixed ends.
Find an expression, in terms of the section dimensions and Poisson’s ratio, for the column length for which the
purely flexural and the purely torsional modes of instability would occur at the same axial load.

In which mode would failure occur if the length were less than the value found? The possibility of local
instability is to be ignored.

Ans. l = (2πb2/t)
√

(1+ ν)/255. Torsion.

P.8.15 A column of length 2l with the doubly symmetric cross section shown in Fig. P.8.15 is compressed between
the parallel platens of a testing machine which fully prevents twisting and warping of the ends.

Using the following data, determine the average compressive stress at which the column first buckles in torsion

l = 500mm, b= 25.0mm, t = 2.5mm, E = 70000N/mm2, E/G= 2.6

Ans. σCR=282N/mm2.
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Fig. P.8.14

Fig. P.8.15

P.8.16 A pin-ended column of length 1.0m has the cross section shown in Fig. P.8.16. If the ends of the column
are free to warp, determine the lowest value of axial load which will cause the column to buckle, and specify the
mode. Take E=70000N/mm2 and G=25000N/mm2.

Ans. 5527N. Column buckles in bending about an axis in the plane of its web.

Fig. P.8.16

P.8.17 A pin-ended column of height 3.0m has a circular cross section of diameter 80mm, wall thickness 2.0mm,
and is converted to an open section by a narrow longitudinal slit; the ends of the column are free to warp. Determine
the values of axial load which would cause the column to buckle in (a) pure bending and (b) pure torsion. Hence,
determine the value of the flexural–torsional buckling load. Take E=70000N/mm2 and G=22000N/mm2.

Note: The position of the shear center of the column section may be found using the method described in
Chapter 16.

Ans. (a) 3.09×104 N, (b) 1.78×104 N, 1.19×104 N.



CHAPTER

9Thin Plates

We shall see in Chapter 11 when we examine the structural components of aircraft that they consist
mainly of thin plates stiffened by arrangements of ribs and stringers. Thin plates under relatively small
compressive loads are prone to buckle and so must be stiffened to prevent this. The determination of
buckling loads for thin plates in isolation is relatively straightforward, but when stiffened by ribs and
stringers, the problem becomes complex and frequently relies on an empirical solution. In fact, it may
be the stiffeners which buckle before the plate, and these, depending on their geometry, may buckle as
a column or suffer local buckling of, say, a flange.
In this chapter, we shall present the theory for the determination of buckling loads of flat plates and

then examine some of the different empirical approaches which various researchers have suggested.
In addition, we shall investigate the particular case of flat plates which, when reinforced by horizontal
flanges and vertical stiffeners, form the spars of aircraft wing structures; these are known as tension
field beams.

9.1 BUCKLING OF THIN PLATES
A thin plate may buckle in a variety of modes depending on its dimensions, the loading, and the
method of support. Usually, however, buckling loads are much lower than those likely to cause failure
in the material of the plate. The simplest form of buckling arises when compressive loads are applied
to simply supported opposite edges and the unloaded edges are free, as shown in Fig. 9.1. A thin
plate in this configuration behaves in exactly the same way as a pin-ended column so that the critical
load is that predicted by the Euler theory. Once this critical load is reached, the plate is incapable of
supporting any further load. This is not the case, however, when the unloaded edges are supported
against displacement out of the xy plane. Buckling, for such plates, takes the form of a bulging dis-
placement of the central region of the plate, while the parts adjacent to the supported edges remain
straight. These parts enable the plate to resist higher loads, which is an important factor in aircraft
design.
At this stage, we are not concerned with this postbuckling behavior but rather with the prediction

of the critical load which causes the initial bulging of the central area of the plate. For the analysis, we
may conveniently use the method of total potential energy, since we have already, in Chapter 7, derived
expressions for strain and potential energy corresponding to various load and support configurations.
In these expressions, we assumed that the displacement of the plate comprises bending deflections only

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00009-9 293
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Fig. 9.1

Buckling of a thin flat plate.

and that these are small compared with the thickness of the plate. These restrictions therefore apply in
the subsequent theory.
First, we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as shown, but

simply supported along all four edges. We have seen in Chapter 7 that its true deflected shape may be
represented by the infinite double trigonometrical series

w=
∞∑
m=1

∞∑
n=1
Amn sin

mπx

a
sin
nπy

b

Also, the total potential energy of the plate is, from Eqs. (7.37) and (7.45),

U +V = 1

2

a∫
0

∫ b

0

[
D

{(
∂ 2w

∂x2
+ ∂ 2w

∂y2

)2

− 2(1− ν)

[
∂ 2w

∂x2
∂ 2w

∂y2
−
(

∂ 2w

∂x ∂y

)2]}
−Nx

(
∂w

∂x

)2]
dxdy

(9.1)

The integration of Eq. (9.1) on substituting for w is similar to those integrations carried out in Chapter 7.
Thus, by comparing with Eq. (7.47),

U +V = π4abD

8

∞∑
m=1

∞∑
n=1
A2mn

(
m2

a2
+ n2

b2

)
− π2b

8a
Nx

∞∑
m=1

∞∑
n=1
m2A2mn (9.2)

The total potential energy of the plate has a stationary value in the neutral equilibrium of its buckled
state (i.e., Nx = Nx,CR). Therefore, differentiating Eq. (9.2) with respect to each unknown coefficient
Amn, we have

∂(U +V)

∂Amn
= π4abD

4
Amn

(
m2

a2
+ n2

b2

)2
− π2b

4a
Nx,CRm

2Amn = 0
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and for a nontrivial solution

Nx,CR = π2a2D
1

m2

(
m2

a2
+ n2

b2

)2
(9.3)

Exactly the same result may have been deduced from Eq. (ii) of Example 7.3, where the displacement
w would become infinite for a negative (compressive) value of Nx equal to that of Eq. (9.3).
We observe from Eq. (9.3) that each term in the infinite series for displacement corresponds, as in

the case of a column, to a different value of critical load (note the problem is an eigenvalue problem).
The lowest value of critical load evolves from some critical combination of integers m and n—that is,
the number of half-waves in the x and y directions, and the plate dimensions. Clearly n= 1 gives a
minimum value so that no matter what the values of m,a, and b, the plate buckles into a half sine wave
in the y direction. Thus, we may write Eq. (9.3) as

Nx,CR = π2a2D
1

m2

(
m2

a2
+ 1

b2

)2
or

Nx,CR = kπ2D

b2
(9.4)

where the plate buckling coefficient k is given by the minimum value of

k =
(
mb

a
+ a

mb

)2
(9.5)

for a given value of a/b. To determine the minimum value of k for a given value of a/b, we plot k as a
function of a/b for different values of m as shown by the dotted curves in Fig. 9.2. The minimum value
of k is obtained from the lower envelope of the curves shown solid in the figure.
It can be seen that m varies with the ratio a/b and that k and the buckling load are a minimum when

k = 4 at values of a/b= 1,2,3, . . .. As a/b becomes large, k approaches 4 so that long narrow plates
tend to buckle into a series of squares.
The transition from one buckling mode to the next may be found by equating values of k for the m

and m+ 1 curves. Hence,
mb

a
+ a

mb
= (m+ 1)b

a
+ a

(m+ 1)b
giving

a

b
=√

m(m+ 1)

Substituting m= 1, we have a/b= √
2= 1.414, and for m= 2,a/b= √

6= 2.45, and so on.
For a given value of a/b, the critical stress, σCR = Nx,CR/t, is found from Eqs. (9.4) and (7.4),

that is,

σCR = kπ2E

12(1− ν2)

(
t

b

)2
(9.6)
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Fig. 9.2

Buckling coefficient k for simply supported plates.

In general, the critical stress for a uniform rectangular plate, with various edge supports and loaded
by constant or linearly varying in-plane direct forces (Nx,Ny) or constant shear forces (Nxy) along its
edges, is given by Eq. (9.6). The value of k remains a function of a/b but also depends on the type of
loading and edge support. Solutions for such problems have been obtained by solving the appropriate
differential equation or by using the approximate (Rayleigh–Ritz) energy method. Values of k for a
variety of loading and support conditions are shown in Fig. 9.3. In Fig. 9.3(c), where k becomes the
shear buckling coefficient, b is always the smaller dimension of the plate.
We see from Fig. 9.3 that k is very nearly constant for a/b>3. This fact is particularly useful in

aircraft structures where longitudinal stiffeners are used to divide the skin into narrow panels (having
small values of b), thereby increasing the buckling stress of the skin.

9.2 INELASTIC BUCKLING OF PLATES
For plates having small values of b/t, the critical stress may exceed the elastic limit of the material of
the plate. In such a situation, Eq. (9.6) is no longer applicable, since, as we saw in the case of columns, E
becomes dependent on stress, as does Poisson’s ratio ν. These effects are usually included in a plasticity
correction factor η so that Eq. (9.6) becomes

σCR = η kπ2E

12(1− ν2)

(
t

b

)2
(9.7)
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Fig. 9.3

(a) Buckling coefficients for flat plates in compression; (b) buckling coefficients for flat plates in bending;
(c) shear buckling coefficients for flat plates.
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where E and ν are elastic values of Young’s modulus and Poisson’s ratio. In the linearly elastic region,
η = 1, which means that Eq. (9.7) may be applied at all stress levels. The derivation of a general
expression for η is outside the scope of this book, but one [Ref. 1] giving good agreement with
experiment is

η = 1− ν2e

1− ν2p

Es
E

[
1

2
+ 1

2

(
1

4
+ 3

4

Et
Es

)1
2
]

where Et and Es are the tangent modulus and secant modulus (stress/strain) of the plate in the inelastic
region and νe and νp are Poisson’s ratio in the elastic and inelastic ranges.

9.3 EXPERIMENTAL DETERMINATION OF CRITICAL
LOAD FOR A FLAT PLATE

In Section 8.3, we saw that the critical load for a column may be determined experimentally, without
actually causing the column to buckle, by means of the Southwell plot. The critical load for an actual,
rectangular, thin plate is found in a similar manner.
The displacement of an initially curved plate from the zero load position was found in Section 7.5,

to be

w1 =
∞∑
m=1

∞∑
n=1
Bmn sin

mπx

a
sin
nπy

b

where

Bmn = AmnNx

π2D
a2

(
m+ n2a2

mb2

)2−Nx
We see that the coefficients Bmn increase with an increase of compressive load intensity Nx. It follows
that when Nx approaches the critical value, Nx,CR, the term in the series corresponding to the buckled
shape of the plate becomes the most significant. For a square plate, n= 1 and m= 1 give a minimum
value of critical load so that at the center of the plate

w1 = A11Nx
Nx,CR −Nx

or rearranging

w1 = Nx,CRw1
Nx

−A11

Thus, a graph of w1 plotted against w1/Nx will have a slope, in the region of the critical load, equal to
Nx,CR.
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9.4 LOCAL INSTABILITY
We distinguished in the introductory remarks to Chapter 8 between primary and secondary (or local)
instability. The latter form of buckling usually occurs in the flanges and webs of thin-walled columns
having an effective slenderness ratio, le/r<20. For le/r>80, this type of column is susceptible to pri-
mary instability. In the intermediate range of le/r between 20 and 80, buckling occurs by a combination
of both primary and secondary modes.
Thin-walled columns are encountered in aircraft structures in the shape of longitudinal stiffeners,

which are normally fabricated by extrusion processes or by forming from a flat sheet. A variety of
cross sections are used, although each is usually composed of flat plate elements arranged to form
angle, channel, Z-, or “top hat” sections, as shown in Fig. 9.4. We see that the plate elements fall into
two distinct categories: flanges which have a free unloaded edge and webs which are supported by the
adjacent plate elements on both unloaded edges.
In local instability, the flanges and webs buckle like plates, with a resulting change in the cross

section of the column. The wavelength of the buckle is of the order of the widths of the plate elements,
and the corresponding critical stress is generally independent of the length of the columnwhen the length
is equal to or greater than three times the width of the largest plate element in the column cross section.
Buckling occurs when theweakest plate element, usually a flange, reaches its critical stress, although

in somecases all the elements reach their critical stresses simultaneously.When this occurs, the rotational
restraint provided by adjacent elements to one another disappears, and the elements behave as though
they are simply supported along their common edges. These cases are the simplest to analyze and are
found where the cross section of the column is an equal-legged angle, T-, cruciform, or a square tube
of constant thickness. Values of local critical stress for columns possessing these types of section may
be found using Eq. (9.7) and an appropriate value of k. For example, k for a cruciform section column
is obtained from Fig. 9.3(a) for a plate which is simply supported on three sides with one edge free and
has a/b>3. Hence, k = 0.43, and if the section buckles elastically, then η = 1 and

σCR = 0.388E
(
t

b

)2
(ν = 0.3)

It must be appreciated that the calculation of local buckling stresses is generally complicated with no
particular method gaining universal acceptance, much of the information available being experimental.
A detailed investigation of the topic is therefore beyond the scope of this book. Further information
may be obtained from all the references listed at the end of this chapter.

Fig. 9.4

(a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed “top hat.”
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9.5 INSTABILITY OF STIFFENED PANELS
It is clear from Eq. (9.7) that plates having large values of b/t buckle at low values of critical stress.
An effective method of reducing this parameter is to introduce stiffeners along the length of the plate,
thereby dividing a wide sheet into a number of smaller and more stable plates. Alternatively, the sheet
may be divided into a series of wide, short columns by stiffeners attached across its width. In the former
type of structure, the longitudinal stiffeners carry part of the compressive load, while in the latter, all
of the load is supported by the plate. Frequently, both methods of stiffening are combined to form a
grid-stiffened structure.
Stiffeners in earlier types of stiffened panel possessed a relatively high degree of strength compared

with the thin skin resulting in the skin buckling at a much lower stress level than the stiffeners. Such
panels may be analyzed by assuming that the stiffeners provide simply supported edge conditions to a
series of flat plates.
A more efficient structure is obtained by adjusting the stiffener sections so that buckling occurs in

both stiffeners and skin at about the same stress. This is achieved by a construction involving closely
spaced stiffeners of comparable thickness to the skin. Since their critical stresses are nearly the same,
there is an appreciable interaction at buckling between skin and stiffeners so that the complete panelmust
be considered a unit. However, caution must be exercised, since it is possible for the two simultaneous
critical loads to interact and reduce the actual critical load of the structure [Ref. 2] (see Example 8.4).
Various modes of buckling are possible, including primary buckling, where the wavelength is of the
order of the panel length, and local buckling, with wavelengths of the order of the width of the plate
elements of the skin or stiffeners. A discussion of the various bucklingmodes of panels having Z-section
stiffeners has been given by Argyris and Dunne [Ref. 3].
The prediction of critical stresses for panels with a large number of longitudinal stiffeners is difficult

and relies heavily on approximate (energy) and semiempirical methods. Bleich [Ref. 4] and Timoshenko
(see [Ref. 1], Chapter 8) gave energy solutions for plates with one and two longitudinal stiffeners and
also consider plates having a large number of stiffeners. Gerard and Becker [Ref. 5] have summarized
much of the work on stiffened plates, and a large amount of theoretical and empirical data are presented
by Argyris and Dunne in the Handbook of Aeronautics [Ref. 3].
For detailed work on stiffened panels, reference should be made to as much as possible of the

precedingworks.The literature is, however, extensive so that herewepresent a relatively simple approach
suggested byGerard [Ref. 1]. Figure 9.5 represents a panel of widthw stiffened by longitudinalmembers
which may be flats (as shown), Z-, I-, channel, or “top hat” sections. It is possible for the panel to behave
as an Euler column, its cross section being that shown in Fig. 9.5. If the equivalent length of the panel

Fig. 9.5

Stiffened panel.
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acting as a column is le, then the Euler critical stress is

σCR,E = π2E

(le/r)2

as in Eq. (8.8). In addition to the column buckling mode, individual plate elements comprising the panel
cross section may buckle as long plates. The buckling stress is then given by Eq. (9.7), that is,

σCR = η kπ2E

12(1− ν2)

(
t

b

)2
where the values of k, t, and b depend on the particular portion of the panel being investigated. For
example, the portion of skin between stiffeners may buckle as a plate simply supported on all four sides.
Thus, for a/b>3, k = 4 from Fig. 9.3(a), and, assuming that buckling takes place in the elastic range,

σCR = 4π2E

12(1− ν2)

(
tsk
bsk

)2
A further possibility is that the stiffeners may buckle as long plates simply supported on three sides
with one edge free. Thus,

σCR = 0.43π2E

12(1− ν2)

(
tst
bst

)2
Clearly, the minimum value of the preceding critical stresses is the critical stress for the panel taken as
a whole.
The compressive load is applied to the panel over its complete cross section. To relate this load to

an applied compressive stress σA acting on each element of the cross section, we divide the load per
unit width, say Nx, by an equivalent skin thickness t̄, hence

σA = Nx
t

where

t = Ast
bsk

+ tsk

and Ast is the stiffener area.
The preceding remarks are concerned with the primary instability of stiffened panels. Values of

local buckling stress have been determined by Boughan, Baab, and Gallaher for idealized web, Z-, and
T-stiffened panels. The results are reproduced by Rivello [Ref. 6] together with the assumed geometries.
Further types of instability found in stiffened panels occur where the stiffeners are riveted or spot

welded to the skin. Such structures may be susceptible to interrivet buckling, in which the skin buckles
between rivets with a wavelength equal to the rivet pitch, or wrinkling, where the stiffener forms an
elastic line support for the skin. In the latter mode, the wavelength of the buckle is greater than the rivet
pitch, and separation of skin and stiffener does not occur. Methods of estimating the appropriate critical
stresses are given in the study of Rivello and the Handbook of Aeronautics [Ref. 3].
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9.6 FAILURE STRESS IN PLATES AND STIFFENED PANELS
The previous discussion on plates and stiffened panels investigated the prediction of buckling stresses.
However, as we have seen, plates retain some of their capacity to carry load even though a portion of
the plate has buckled. In fact, the ultimate load is not reached until the stress in the majority of the plate
exceeds the elastic limit. The theoretical calculation of the ultimate stress is difficult, since nonlinearity
results from both large deflections and the inelastic stress–strain relationship.
Gerard [Ref. 1] proposes a semiempirical solution for flat plates supported on all four edges. After

elastic buckling occurs, theory and experiment indicate that the average compressive stress, σ̄a, in the
plate and the unloaded edge stress, σe, are related by the following expression:

σ̄a

σCR
= α1

(
σe

σCR

)n
(9.8)

where

σCR = kπ2E

12(1− ν2)

(
t

b

)2
and α1 is some unknown constant. Theoretical work by Stowell [Ref. 7] and Mayers and Budiansky
[Ref. 8] shows that failure occurs when the stress along the unloaded edge is approximately equal to
the compressive yield strength, σcy, of the material. Hence, substituting σcy for σe in Eq. (9.8) and
rearranging give

σ̄f

σcy
= α1

(
σCR

σcy

)1−n
(9.9)

where the average compressive stress in the plate has become the average stress at failure σ̄f . Substituting
for σCR in Eq. (9.9) and putting

α1π
2(1−n)

[12(1− ν2)]1−n
= α

yield

σ̄f

σcy
= αk1−n

[
t

b

(
E

σcy

) 1
2
]2(1−n)

(9.10)

or, in a simplified form,

σ̄f

σcy
= β

[
t

b

(
E

σcy

) 1
2
]m

(9.11)

where β = αkm/2. The constants β and m are determined by the best fit of Eq. (9.11) to test data.
Experiments on simply supported flat plates and square tubes of various aluminum and magnesium

alloys and steel show that β = 1.42 and m= 0.85fit the results within ±10 percent up to the yield
strength. Corresponding values for long, clamped, flat plates are β = 1.80, m= 0.85.
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Gerard [Refs. 9–12] extended the preceding method to the prediction of local failure stresses for the
plate elements of thin-walled columns. Equation (9.11) becomes

σ̄f

σcy
= βg

[(
gt2

A

)(
E

σcy

) 1
2
]m

(9.12)

where A is the cross-sectional area of the column, βg andm are empirical constants, and g is the number
of cuts required to reduce the cross section to a series of flanged sections plus the number of flanges
that would exist after the cuts are made. Examples of the determination of g are shown in Fig. 9.6.
The local failure stress in longitudinally stiffened panels was determined by Gerard [Refs. 10, 12]

using a slightly modified form of Eqs. (9.11) and (9.12). Thus, for a section of the panel consisting of
a stiffener and a width of skin equal to the stiffener spacing

σ̄f

σcy
= βg

[
gtsktst
A

(
E

σ̄cy

) 1
2
]m

(9.13)

where tsk and tst are the skin and stiffener thicknesses, respectively. A weighted yield stress σ̄cy is used
for a panel in which the material of the skin and stiffener have different yield stresses; thus,

σ̄cy = σcy+ σcy,sk[(t/tst) − 1]
t/tst

where t̄ is the average or equivalent skin thickness previously defined. The parameter g is obtained in
a similar manner to that for a thin-walled column, except that the number of cuts in the skin and the

Fig. 9.6

Determination of empirical constant g.
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Fig. 9.7

Determination of g for two types of stiffener/skin combinations.

number of equivalent flanges of the skin are included. A cut to the left of a stiffener is not counted, since
it is regarded as belonging to the stiffener to the left of that cut. The calculation of g for two types of
skin/stiffener combination is illustrated in Fig. 9.7. Equation (9.13) is applicable to either monolithic or
built-up panels when, in the latter case, interrivet buckling and wrinkling stresses are greater than the
local failure stress.
The values of failure stress given by Eqs. (9.11), (9.12), and (9.13) are associated with local or sec-

ondary instability modes. Consequently, they apply when le/r ≤ 20. In the intermediate range between
the local and primary modes, failure occurs through a combination of both. At the moment, there is no
theory that predicts satisfactorily failure in this range, and we rely on test data and empirical methods.
The NACA (now NASA) have produced direct reading charts for the failure of “top hat,” Z-, and
Y-section stiffened panels; a bibliography of the results is given by Gerard [Ref. 10].
It must be remembered that research into methods of predicting the instability and postbuckling

strength of the thin-walled types of structure associated with aircraft construction is a continuous
process. Modern developments include the use of the computer-based finite element technique (see
Chapter 6) and the study of the sensitivity of thin-walled structures to imperfections produced during
fabrication; much useful information and an extensive bibliography are contained in the study ofMurray
[Ref. 2].

9.7 TENSION FIELD BEAMS
The spars of aircraft wings usually comprise an upper and a lower flange connected by thin, stiffened
webs. These webs are often of such a thickness that they buckle under shear stresses at a fraction of
their ultimate load. The form of the buckle is shown in Fig. 9.8(a), where the web of the beam buckles
under the action of internal diagonal compressive stresses produced by shear, leaving a wrinkled web
capable of supporting diagonal tension only in a direction perpendicular to that of the buckle; the beam
is then said to be a complete tension field beam.
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Fig. 9.8

Diagonal tension field beam.

9.7.1 Complete Diagonal Tension
The theory presented here is due to Wagner [Ref. 13]. The beam shown in Fig. 9.8(a) has concentrated
flange areas having a depth d between their centroids and vertical stiffeners which are spaced uniformly
along the length of the beam. It is assumed that the flanges resist the internal bending moment at any
sectionof thebeam,while theweb,of thickness t, resists thevertical shear force.Theeffect of this assump-
tion is to produce a uniform shear stress distribution through the depth of the web (see Section 19.3) at
any section. Therefore, at a section of the beam where the shear force is S, the shear stress τ is given by

τ = S

td
(9.14)

Consider now an element ABCD of the web in a panel of the beam, as shown in Fig. 9.8(a). The element
is subjected to tensile stresses, σt , produced by the diagonal tension on the planes AB and CD; the angle
of the diagonal tension is α. On a vertical plane FD in the element, the shear stress is τ and the direct
stress is σz. Now, considering the equilibrium of the element FCD (Fig. 9.8(b)) and resolving forces
vertically, we have (see Section 1.6)

σtCDt sinα = τFDt

which gives

σt = τ

sinα cosα
= 2τ

sin2α
(9.15)

or, substituting for τ from Eq. (9.14) and noting that in this case S =W at all sections of the beam,

σt = 2W

td sin2α
(9.16)

Further, resolving forces horizontally for the element FCD,

σzFDt = σtCDt cosα
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which gives

σz = σt cos
2α

or, substituting for σt from Eq. (9.15),

σz = τ

tanα
(9.17)

or, for this particular beam, from Eq. (9.14)

σz = W

td tanα
(9.18)

Since τ and σt are constant through the depth of the beam, it follows that σz is constant through the
depth of the beam.
The direct loads in the flanges are found by considering a length z of the beam, as shown in Fig. 9.9.

On the planemm, there are direct and shear stresses σz and τ acting in the web, together with direct loads
FT and FB in the top and bottom flanges, respectively. FT and FB are produced by a combination of
the bending momentWz at the section plus the compressive action (σz) of the diagonal tension. Taking
moments about the bottom flange,

Wz = FTd− σztd2

2

Hence, substituting for σz from Eq. (9.18) and rearranging,

FT = Wz

d
+ W

2tanα
(9.19)

Fig. 9.9

Determination of flange forces.
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Now, resolving forces horizontally,

FB−FT+ σztd = 0
which gives, on substituting for σz and FT from Eqs. (9.18) and (9.19),

FB = Wz

d
− W

2tanα
(9.20)

The diagonal tension stress σt induces a direct stress σy on horizontal planes at any point in the web.
Then, on a horizontal plane HC in the element ABCD of Fig. 9.8, there is a direct stress σy and a
complementary shear stress τ , as shown in Fig. 9.10.
From a consideration of the vertical equilibrium of the element HDC, we have

σyHCt = σtCDt sinα

which gives

σy = σt sin
2α

Substituting for σt from Eq. (9.15),

σy = τ tanα (9.21)

or, from Eq. (9.14), in which S =W

σy = W

td
tanα (9.22)

The tensile stresses σy on horizontal planes in the web of the beam cause compression in the vertical
stiffeners. Each stiffener may be assumed to support half of each adjacent panel in the beam so that the

Fig. 9.10

Stress system on a horizontal plane in the beam web.
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compressive load P in a stiffener is given by

P = σytb

which becomes, from Eq. (9.22),

P = Wb

d
tanα (9.23)

If the load P is sufficiently high, the stiffeners will buckle. Tests indicate that they buckle as columns
of equivalent length

or
le = d/√4− 2b/d for b< 1.5d

le = d for b> 1.5d

}
(9.24)

In addition to causing compression in the stiffeners, the direct stress σy produces bending of the beam
flanges between the stiffeners, as shown in Fig. 9.11. Each flange acts as a continuous beam carrying a
uniformly distributed load of intensity σyt. The maximum bending moment in a continuous beam with
ends fixed against rotation occurs at a support and is wL2/12, in which w is the load intensity and L is
the beam span. In this case, therefore, the maximum bending moment Mmax occurs at a stiffener and is
given by

Mmax = σytb2

12

or, substituting for σy from Eq. (9.22),

Mmax = Wb2 tanα

12d
(9.25)

Midway between the stiffeners this bending moment reduces to Wb2 tan α/24d.
The angle α adjusts itself such that the total strain energy of the beam is a minimum. If it is assumed

that the flanges and stiffeners are rigid, then the strain energy comprises the shear strain energy of the
web only and α = 45◦. In practice, both flanges and stiffeners deform so that α is somewhat less than

Fig. 9.11

Bending of flanges due to web stress.
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45◦, usually of the order of 40◦ and, in the type of beam common to aircraft structures, rarely below
38◦. For beams having all components made of the same material, the condition of minimum strain
energy leads to various equivalent expressions for α, one of which is

tan2α = σt + σF

σt + σS
(9.26)

in which σF and σS are the uniform direct compressive stresses induced by the diagonal tension in
the flanges and stiffeners, respectively. Thus, from the second term on the right-hand side of either
Eq. (9.19) or Eq. (9.20),

σF = W

2AF tanα
(9.27)

in which AF is the cross-sectional area of each flange. Also, from Eq. (9.23),

σS = Wb

ASd
tanα (9.28)

where AS is the cross-sectional area of a stiffener. Substitution of σt from Eq. (9.16) and σF and σS from
Eqs. (9.27) and (9.28) into Eq. (9.26) produces an equation which may be solved for α. An alternative
expression for α, again derived from a consideration of the total strain energy of the beam, is

tan4α = 1+ td/2AF
1+ tb/AS (9.29)

Example 9.1
The beam shown in Fig. 9.12 is assumed to have a complete tension fieldweb. If the cross-sectional areas
of the flanges and stiffeners are, respectively, 350mm2 and 300mm2 and the elastic section modulus of
each flange is 750mm3, determine the maximum stress in a flange and also whether or not the stiffeners
will buckle. The thickness of the web is 2mm, and the second moment of area of a stiffener about an
axis in the plane of the web is 2000mm4; E = 70000N/mm2.
From Eq. (9.29),

tan4α = 1+ 2× 400/(2× 350)
1+ 2× 300/300 = 0.7143

so that

α = 42.6◦

The maximum flange stress occurs in the top flange at the built-in end where the bending moment
on the beam is greatest and the stresses due to bending and diagonal tension are additive. Therefore,
from Eq. (9.19),

FT = 5× 1200
400

+ 5

2tan42.6◦
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Fig. 9.12

Beam of Example 9.1.

that is,

FT = 17.7kN
Hence, the direct stress in the top flange produced by the externally applied bending moment and the
diagonal tension is 17.7×103/350= 50.7N/mm2. In addition to this uniform compressive stress, local
bending of the type shown in Fig. 9.11 occurs. The local bending moment in the top flange at the built-in
end is found using Eq. (9.25), that is,

Mmax = 5× 103× 3002 tan42.6◦
12× 400 = 8.6× 104Nmm

The maximum compressive stress corresponding to this bending moment occurs at the lower extrem-
ity of the flange and is 8.6×104/750=114.9N/mm2. Thus, the maximum stress in a flange occurs
on the inside of the top flange at the built-in end of the beam, is compressive, and is equal to
114.9+50.7=165.6N/mm2.
The compressive load in a stiffener is obtained using Eq. (9.23), that is,

P = 5× 300tan42.6◦
400

= 3.4kN
Since, in this case, b<1.5d, the equivalent length of a stiffener as a column is given by the first of
Eqs. (9.24), that is,

le = 400/√4− 2× 300/400= 253mm
From Eq. (8.7), the buckling load of a stiffener is then

PCR = π2× 70000× 2000
2532

= 22.0kN
Clearly, the stiffener will not buckle.
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In Eqs. (9.28) and (9.29), it is implicitly assumed that a stiffener is fully effective in resisting axial
load. This will be the case if the centroid of area of the stiffener lies in the plane of the beam web.
Such a situation arises when the stiffener consists of two members symmetrically arranged on opposite
sides of the web. In the case where the web is stiffened by a single member attached to one side, the
compressive load P is offset from the stiffener axis, thereby producing bending in addition to axial load.
For a stiffener having its centroid a distance e from the center of the web, the combined bending and
axial compressive stress, σc, at a distance e from the stiffener centroid is

σc = P

AS
+ Pe2

ASr2

in which r is the radius of gyration of the stiffener cross section about its neutral axis. (Note: second
moment of area I = Ar2.) Then,

σc = P

AS

[
1+

(e
r

)2]
or

σc = P

ASe

where

ASe = AS
1+ (e/r)2

(9.30)

and is termed the effective stiffener area [Ref. 1].

9.7.2 Incomplete Diagonal Tension
In modern aircraft structures, beams having extremely thin webs are rare. They retain, after buckling,
some of their ability to support loads so that even near failure they are in a state of stress somewhere
between that of pure diagonal tension and the prebuckling stress. Such a beam is described as an
incomplete diagonal tension field beam and may be analyzed by semiempirical theory as follows.
It is assumed that the nominal web shear τ (= S/td) may be divided into a “true shear” component

τS and a diagonal tension component τDT by writing

τDT = kτ , τS = (1− k)τ (9.31)

where k, the diagonal tension factor, is a measure of the degree to which the diagonal tension is
developed. A completely unbuckled web has k = 0, whereas k = 1 for a web in complete diagonal
tension. The value of k corresponding to a web having a critical shear stress τCR is given by the
empirical expression

k = tanh
(
0.5 log

τ

τCR

)
(9.32)
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The ratio τ/τCR is known as the loading ratio or buckling stress ratio. The buckling stress τCR may be
calculated from the formula

τCR,elastic = kssE
(
t

b

)2[
Rd + 1

2
(Rb−Rd)

(
b

d

)3]
(9.33)

where kss is the coefficient for a plate with simply supported edges, and Rd and Rb are empirical restraint
coefficients for the vertical and horizontal edges of the web panel, respectively. Graphs giving kss,Rd,
and Rb are reproduced in the study of Kuhn [Ref. 13].
The stress equations (9.27) and (9.28) are modified in the light of these assumptions and may be

rewritten in terms of the applied shear stress τ as

σF = kτ cotα

(2AF/td) + 0.5(1− k) (9.34)

σS = kτ tanα

(AS/tb) + 0.5(1− k) (9.35)

Further, the web stress σt given by Eq. (9.15) becomes two direct stresses: σ1 along the direction of α
given by

σ1 = 2kτ

sin2α
+ τ (1− k)sin2α (9.36)

and σ2 perpendicular to this direction given by

σ2 = −τ (1− k)sin2α (9.37)

The secondary bending moment of Eq. (9.25) is multiplied by the factor k, while the effective lengths
for the calculation of stiffener buckling loads become (see Eqs. (9.24))

or le = ds/
√
1+ k2(3− 2b/ds) for b< 1.5d

le = ds for b> 1.5d

where ds is the actual stiffener depth, as opposed to the effective depth d of the web, taken between the
web/flange connections, as shown in Fig. 9.13.We observe that Eqs. (9.34) through (9.37) are applicable
to either incomplete or complete diagonal tension field beams, since, for the latter case, k = 1 giving
the results of Eqs. (9.27), (9.28), and (9.15).
In some cases, beams taper along their lengths, inwhich case the flange loads are no longer horizontal

but have vertical components which reduce the shear load carried by the web. Thus, in Fig. 9.14, where
d is the depth of the beam at the section considered, we have, resolving forces vertically,

W − (FT+FB)sinβ − σt(d cosα)sinα = 0 (9.38)

For horizontal equilibrium,

(FT−FB)cosβ − σttd cos
2α = 0 (9.39)
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Fig. 9.13

Calculation of stiffener buckling load.

Fig. 9.14

Effect of taper on diagonal tension field beam calculations.

Taking moments about B,

Wz−FTd cosβ + 1
2σttd

2 cos2α = 0 (9.40)

Solving Eqs. (9.38), (9.39), and (9.40) for σt , FT, and FB,

σt = 2W

td sin2α

(
1− 2z

d
tanβ

)
(9.41)

FT = W

d cosβ

[
z+ d cotα

2

(
1− 2z

d
tanβ

)]
(9.42)

FB = W

d cosβ

[
z− d cotα

2

(
1− 2z

d
tanβ

)]
(9.43)

Equation (9.23) becomes

P = Wb

d
tanα

(
1− 2z

d
tanβ

)
(9.44)
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Also, the shear force S at any section of the beam is, from Fig. 9.14,

S =W − (FT+FB)sinβ

or, substituting for FT and FB from Eqs. (9.42) and (9.43),

S =W
(
1− 2z

d
tanβ

)
(9.45)

9.7.3 Postbuckling Behavior
Sections 9.7.1 and 9.7.2 are concerned with beams in which the thin webs buckle to form tension
fields; the beam flanges are then regarded as being subjected to bending action as in Fig. 9.11. It is
possible, if the beam flanges are relatively light, for failure due to yielding to occur in the beam flanges
after the web has buckled so that plastic hinges form and a failure mechanism of the type shown in
Fig. 9.15 exists. This postbuckling behavior was investigated by Evans et al. [Ref. 14], who developed
a design method for beams subjected to bending and shear. It is their method of analysis which is
presented here.
Suppose that the panel AXBZ in Fig. 9.15 has collapsed due to a shear load S and a bending moment

M; plastic hinges have formed at W, X, Y, and Z. In the initial stages of loading, the web remains
perfectly flat until it reaches its critical stresses: τcr in shear and σcrb in bending. The values of these

Fig. 9.15

Collapse mechanism of a panel of a tension field beam.
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stresses may be found approximately from

(
σmb

σcrb

)2
+
(

τm

τcr

)2
= 1 (9.46)

where σcrb is the critical value of bending stress with S = 0, M 
=0, and τcr is the critical value of
shear stress when S 
=0 and M = 0. Once the critical stress is reached, the web starts to buckle and
cannot carry any increase in compressive stress so that, as we have seen in Section 9.7.1, any additional
load is carried by tension field action. It is assumed that the shear and bending stresses remain at their
critical values τm and σmb and that there are additional stresses σt which are inclined at an angle θ to
the horizontal and which carry any increases in the applied load. At collapse—that is, at ultimate load
conditions—the additional stress σt reaches its maximum value σt(max), and the panel is in the collapsed
state shown in Fig. 9.15.
Consider now the small rectangular element on the edge AW of the panel before collapse. The

stresses acting on the element are shown in Fig. 9.16(a). The stresses on planes parallel to and perpen-
dicular to the direction of the buckle may be found by considering the equilibrium of triangular elements
within this rectangular element. Initially, we shall consider the triangular element CDE which is sub-
jected to the stress system shown in Fig. 9.16(b) and is in equilibrium under the action of the forces corre-
sponding to these stresses. Note that the edgeCEof the element is parallel to the direction of the buckle in
the web.
For equilibrium of the element in a direction perpendicular to CE (see Section 1.6),

σξCE+ σmbEDcosθ − τmEDsinθ − τmDCcosθ = 0
Dividing by CE and rearranging, we have

σξ = −σmb cos
2 θ + τm sin2θ (9.47)

Similarly, by considering the equilibrium of the element in the direction EC, we have

τηξ = −σmb

2
sin2θ − τm cos2θ (9.48)

Fig. 9.16

Determination of stresses on planes parallel and perpendicular to the plane of the buckle.
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Further, the direct stress ση on the plane FD (Fig. 9.16(c)) which is perpendicular to the plane of the
buckle is found from the equilibrium of the element FED. Then,

σηFD+ σmbEDsinθ + τmEFsinθ + τmDEcosθ = 0
Dividing by FD and rearranging give

ση = −σmb sin
2 θ − τm sin2θ (9.49)

Note that the shear stress on this plane forms a complementary shear stress system with τηξ .
The failure condition is reached by adding σt(max) to σξ and using the von Mises theory of elastic

failure (see [Ref. 15]), that is,

σ 2y = σ 21 + σ 22 − σ1σ2+ 3τ 2 (9.50)

where σy is the yield stress of the material, σ1 and σ2 are the direct stresses acting on two mutually
perpendicular planes, and τ is the shear stress acting on the same two planes. Hence, when the yield
stress in the web is σyw, failure occurs when

σ 2yw = (σξ + σt(max))
2+ σ 2η − ση(σξ + σt(max)) + 3τ 2ηξ (9.51)

Eqs. (9.47), (9.48), (9.49), and (9.51) may be solved for σt(max), which is then given by

σt(max) = −1
2
A+ 1

2
[A2− 4(σ 2mb+ 3τ 2m − σ 2yw)]

1
2 (9.52)

where

A= 3τm sin2θ + σmb sin
2 θ − 2σmb cos2 θ (9.53)

These equations have been derived for a point on the edge of the panel but are applicable to any point
within its boundary. Therefore, the resultant force Fw corresponding to the tension field in the web may
be calculated and its line of action determined.
If the average stresses in the compression and tension flanges are σcf and σtf and the yield stress of

the flanges is σyf , the reduced plastic moments in the flanges are (see [Ref. 15])

M ′
pc =Mpc

[
1−

(
σcf

σyf

)2]
(compression flange) (9.54)

M ′
pt =Mpt

[
1−

(
σtf

σyf

)]
(tension flange) (9.55)

The position of each plastic hinge may be found by considering the equilibrium of a length of flange
and using the principle of virtual work. In Fig. 9.17, the length WX of the upper flange of the beam is
given a virtual displacement φ. The work done by the shear force at X is equal to the energy absorbed
by the plastic hinges at X and W and the work done against the tension field stress σt(max). Suppose
that the average value of the tension field stress is σtc—that is, the stress at the midpoint of WX.
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Fig. 9.17

Determination of plastic hinge position.

Then,

Sxccφ = 2M ′
pcφ + σtc tw sin

2 θ
c2c
2

φ

The minimum value of Sx is obtained by differentiating with respect to cc, that is,

dSx
dcc

= −2M
′
pc

c2c
+ σtc tw

sin2 θ

2
= 0

which gives

c2c = 4M ′
pc

σtc tw sin2 θ
(9.56)

Similarly, in the tension flange,

c2t = 4M ′
pt

σtt tw sin2 θ
(9.57)

Clearly, for the plastic hinges to occur within a flange, both cc and ct must be less than b. Therefore,
from Eq. (9.56),

M ′
pc <

twb2 sin2 θ

4
σtc (9.58)

where σtc is found from Eqs. (9.52) and (9.53) at the midpoint of WX.
The average axial stress in the compression flange between W and X is obtained by considering the

equilibrium of half of the length of WX (Fig. 9.18).
Then,

Fc = σcfAcf + σtctw
cc
2
sinθ cosθ + τmtw

cc
2
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Fig. 9.18

Determination of flange stress.

from which

σcf = Fc− 1
2 (σtc sinθ cosθ + τm)twcc

Acf
(9.59)

whereFc is the force in the compressionflange atWandAcf is the cross-sectional area of the compression
flange.
Similarly, for the tension flange,

σtf = Ft + 1
2 (σtt sinθ cosθ + τm)twct

Atf
(9.60)

The forcesFc andFt are found by considering the equilibrium of the beam to the right ofWY (Fig. 9.19).
Then, resolving vertically and noting that Scr=τmtwd,

Sult = Fw sinθ + τmtwd+
∑
Wn (9.61)

Resolving horizontally and noting that Hcr = τmtw (b−cc−ct),
Fc−Ft = Fw cosθ − τmtw(b− cc− ct) (9.62)

Taking moments about O, we have

Fc+Ft = 2

d

[
Sult

(
s+ b+ cc− ct

2

)
+M ′

pt −M ′
pc

+Fwq−Mw−
∑
n

Wnzn

] (9.63)

where W1 to Wn are external loads applied to the beam to the right of WY and Mw is the bending
moment in the web when it has buckled and become a tension field, that is,

Mw = σmbbd2

b
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Fig. 9.19

Determination of flange forces.

The flange forces are then

Fc = Sult
2d

(d cot θ + 2s+ b+ cc− ct)

+ 1

d

(
M ′
pt −M ′

pc+Fwq−Mw−
∑
n

Wnzn

)

− 1

2
τmtw(d cot θ + b− cc− ct)

(9.64)

Ft = Sult
2d

(d cot θ + 2s+ b+ cc− ct)

+ 1

d

(
M ′
pt −M ′

pc−Fwq−Mw−
∑
n

Wnzn

)

+ 1

2
τmtw(d cot θ + b− cc− ct)

(9.65)

Evans et al. [Ref. 14] adopted an iterative procedure for solving Eqs. (9.61) through (9.65) in which an
initial value of θ was assumed and σcf and σtf were taken to be zero. Then, cc and ct were calculated,
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and approximate values of Fc and Ft are found, giving better estimates for σcf and σtf . The procedure
was then repeated until the required accuracy was obtained.
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Problems
P.9.1 A thin square plate of side a and thickness t is simply supported along each edge and has a slight initial
curvature, giving it an initial deflected shape.

w0 = δ sin
πx

a
sin

πy

a

If the plate is subjected to a uniform compressive stress σ in the x-direction (see Fig. P.9.1), find an expression
for the elastic deflection w normal to the plate. Show also that the deflection at the midpoint of the plate can be
presented in the form of a Southwell plot and illustrate your answer with a suitable sketch.

Ans. w = [σ tδ/(4π2D/a2− σ t)] sin πx
a sin

πy
a

P.9.2 A uniform flat plate of thickness t has a width b in the y direction and length l in the x direction (see
Fig. P.9.2). The edges parallel to the x axis are clamped, and those parallel to the y axis are simply supported.
A uniform compressive stress σ is applied in the x direction along the edges parallel to the y axis. Using an energy
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Fig. P.9.1 Fig. P.9.2

method, find an approximate expression for themagnitude of the stress σ which causes the plate to buckle, assuming
that the deflected shape of the plate is given by

w= a11 sin mπx

l
sin2

πy

b

For the particular case l = 2b, find the number of half-wavesm corresponding to the lowest critical stress, expressing
the result to the nearest integer. Determine also the lowest critical stress.

Ans. m= 3, σCR = [6E/(1− v2)](t/b)2
P.9.3 A panel, comprising flat sheet and uniformly spaced Z-section stringers, a part of whose cross section is
shown in Fig. P.9.3, is to be investigated for strength under uniform compressive loads in a structure in which it is
to be stabilized by frames a distance l apart, l being appreciably greater than the spacing b.
(a) State modes of failure you would consider and how you would determine appropriate limiting stresses.
(b) Describe a suitable test to verify your calculations, giving particulars of the specimen, the manner of support,

and the measurements you would take. The latter should enable you to verify the assumptions made, as well
as to obtain the load supported.

Fig. P.9.3

P.9.4 Part of a compression panel of internal construction is shown in Fig. P.9.4. The equivalent pin-center length
of the panel is 500mm. The material has a Young’s modulus of 70000N/mm2, and its elasticity may be taken as
falling catastrophically when a compressive stress of 300N/mm2 is reached. Taking coefficients of 3.62 for buckling
of a plate with simply supported sides and of 0.385 with one side simply supported and one free, determine (a) the
load per mm width of panel when initial buckling may be expected and (b) the load per mm for ultimate failure.
Treat the material as thin for calculating section constants, and assume that after initial buckling, the stress in the
plate increases parabolically from its critical value in the center of sections.
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Ans. 613.8N/mm, 844.7N/mm.

Fig. P.9.4

P.9.5 A simply supported beam has a span of 2.4m and carries a central concentrated load of 10kN. The flanges
of the beam each have a cross-sectional area of 300mm2, while that of the vertical web stiffeners is 280mm2.
If the depth of the beam, measured between the centroids of area of the flanges, is 350mm and the stiffeners are
symmetrically arranged about the web and spaced at 300mm intervals, determine the maximum axial load in a
flange and the compressive load in a stiffener.

It may be assumed that the beam web, of thickness 1.5mm, is capable of resisting diagonal tension only.

Ans. 19.9kN, 3.9kN.

P.9.6 The spar of an aircraft is to be designed as an incomplete diagonal tension beam, the flanges being parallel.
The stiffener spacing will be 250mm, the effective depth of web will be 750mm, and the depth between web-to-
flange attachments is 725mm.

The spar is to carry an ultimate shear force of 100 000N. The maximum permissible shear stress is 165N/mm2,
but it is also required that the shear stress should not exceed 15 times the critical shear stress for the web panel.

Assuming α to be 40◦ and using the following relationships:
(i) Select the smallest suitable web thickness from the following range of standard thicknesses. (Take Young’s

modulus E as 70 000N/mm2.)

0.7mm,0.9mm,1.2mm,1.6mm

(ii) Calculate the stiffener end load and the secondary bending moment in the flanges (assume stiffeners to be
symmetrical about the web).
The shear stress buckling coefficient for the web may be calculated from the expression

K = 7.70[1+ 0.75(b/d)2]
b and d having their usual significance.

The relationship between the diagonal tension factor and the buckling stress ratio is

τ/τCR 5 7 9 11 13 15
k 0.37 0.40 0.42 0.48 0.51 0.53

Note that α is the angle of diagonal tension measured from the spanwise axis of the beam, as in the usual
notation.

Ans. 1.2mm, 130AS/(1+0.0113AS), 238910Nmm.
P.9.7 The main compressive wing structure of an aircraft consists of stringers, having the section shown in
Fig. P.9.7(b), bonded to a thin skin (Fig. P.9.7(a)). Find suitable values for the stringer spacing b and rib spacing L
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if local instability, skin buckling, and panel strut instability all occur at the same stress. Note that in Fig. P.9.7(a),
only two of several stringers are shown for diagrammatic clarity. Also, the thin skin should be treated as a flat plate,
since the curvature is small. For a flat plate simply supported along two edges, assume a buckling coefficient of
3.62. Take E=69000N/mm2.

Ans. b= 56.5mm, L = 700mm.

Fig. P.9.7
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CHAPTER

10Materials

With this chapter, we begin the purely aeronautical part of the book, where we consider structures
peculiar to the field of aeronautical engineering. These structures are typified by arrangements of thin,
load-bearing skins, frames, and stiffeners, fabricated from lightweight, high-strengthmaterials, of which
aluminum alloys are the most widely used examples. As a preliminary to the analysis of the basic
aircraft structural forms presented in subsequent chapters, we shall discuss the materials used in aircraft
construction.
Several factors influence the selection of the structural material for an aircraft, but among these,

strength allied to lightness is probably the most important. Other properties having varying, though
sometimes critical, significance are stiffness, toughness, resistance to corrosion, fatigue, the effects
of environmental heating, ease of fabrication, availability and consistency of supply, and, not least
important, cost.
The main groups of materials used in aircraft construction have been wood, steel, aluminum alloys

with, more recently, titanium alloys, and fiber-reinforced composites. In the field of engine design,
titanium alloys are used in the early stages of a compressor, while nickel-based alloys or steels are used
for the hotter later stages. As we are concerned primarily with the materials involved in the construction
of the airframe, discussion of materials used in engine manufacture falls outside the scope of this book.

10.1 ALUMINUM ALLOYS
Pure aluminum is a relatively low-strength, extremely flexible metal with virtually no structural applica-
tions. However, when alloyed with other metals, its properties are improved significantly. Three groups
of aluminum alloy have been used in the aircraft industry for many years and still play a major role in
aircraft construction. In the first of these, aluminum is alloyed with copper, magnesium, manganese,
silicon, and iron and has a typical composition of 4% copper, 0.5%magnesium, 0.5%manganese, 0.3%
silicon, and 0.2% iron, with the remainder being aluminum. In the wrought, heat-treated, naturally aged
condition, this alloy possesses a 0.1 percent proof stress not less than 230N/mm2, a tensile strength not
less than 390N/mm2, and an elongation at fracture of 15 percent. Artificial aging at a raised temperature
of, for example, 170◦C increases the proof stress to not less than 370N/mm2 and the tensile strength to
not less than 460N/mm2, with an elongation of 8 percent.
The second group of alloys contains, in addition to the preceding 1 to 2% of nickel, a higher content

of magnesium and possible variations in the amounts of copper, silicon, and iron. The most important

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
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property of these alloys is their retention of strength at high temperatures, whichmakes them particularly
suitable for aero engine manufacture. A development of these alloys by Rolls-Royce and High Duty
Alloys Ltd replaced some of the nickel with iron and reduced the copper content; these RR alloys, as
they were called, were used for forgings and extrusions in aero engines and airframes.
The third group of alloys depends on the inclusion of zinc and magnesium for their high strength and

has a typical composition of 2.5%copper, 5%zinc, 3%magnesium, andup to 1%nickel,withmechanical
properties of 0.1 percent proof stress 510N/mm2, tensile strength 585N/mm2, and an elongation of
8 percent. In a modern development of this alloy, nickel has been eliminated and provision made for
the addition of chromium and further amounts of manganese.
Alloys from each of the preceding groups have been used extensively for airframes, skins, and

other stressed components, the choice of alloy being influenced by factors such as strength (proof and
ultimate stress), ductility, ease of manufacture (e.g., in extrusion and forging), resistance to corrosion
and amenability to protective treatment, fatigue strength, freedom from liability to sudden cracking
due to internal stresses, and resistance to fast crack propagation under load. Clearly, different types
of aircraft have differing requirements. A military aircraft, for instance, having a relatively short life
measured in hundreds of hours, does not call for the same degree of fatigue and corrosion resistance as
a civil aircraft with a required life of 30000hours or more.
Unfortunately, as one particular property of aluminum alloys is improved, other desirable proper-

ties are sacrificed. For example, the extremely high static strength of the aluminum–zinc–magnesium
alloys was accompanied for many years by a sudden liability to crack in an unloaded condition due
to the retention of internal stresses in bars, forgings, and sheet after heat treatment. Although varia-
tions in composition have eliminated this problem to a considerable extent, other deficiencies showed
themselves. Early postwar passenger aircraft experienced large numbers of stress-corrosion failures of
forgings and extrusions. The problem became so serious that in 1953 it was decided to replace as many
aluminum–zinc–manganese components as possible with the aluminum–4% copper Alloy L65 and to
prohibit the use of forgings in zinc-bearing alloy in all future designs. However, improvements in the
stress-corrosion resistance of the aluminum–zinc–magnesium alloys have resulted in recent years from
British, American, and German researches. Both British and American opinions agree on the benefits
of including about 1% copper but disagree on the inclusion of chromium and manganese, while in
Germany, the addition of silver has been found extremely beneficial. Improved control of casting
techniques has brought further improvements in resistance to stress corrosion. The development
of aluminum–zinc–magnesium–copper alloys has largely met the requirement for aluminum alloys
possessing high strength, good fatigue crack growth resistance, and adequate toughness. Further devel-
opment concentrates on the production of materials possessing higher specific properties, bringing
benefits in relation to weight saving rather than increasing strength and stiffness.
The first group of alloys possesses a lower static strength than the preceding zinc-bearing alloys

but are preferred for portions of the structure where fatigue considerations are of primary importance,
such as the undersurfaces of wings, where tensile fatigue loads predominate. Experience has shown
that the naturally aged version of these alloys has important advantages over the fully heat-treated
forms in fatigue endurance and resistance to crack propagation. Furthermore, the inclusion of a higher
percentage ofmagnesiumwas found, inAmerica, to produce, in the naturally aged condition,mechanical
properties between those of the normal naturally aged and artificially aged alloy. This alloy designated
2024 (aluminum–copper alloys form the 2000 series) has the nominal composition: 4.5% copper, 1.5%
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magnesium, 0.6%manganese,with the remainder aluminumandappears to be a satisfactory compromise
between the various important, but sometimes conflicting, mechanical properties.
Interest in aluminum–magnesium–silicon alloys has recently increased, although they have been

in general use in the aerospace industry for decades. The reasons for this renewed interest are that
they are potentially cheaper than aluminum–copper alloys and, being weldable, are capable of reducing
manufacturing costs. In addition, variants, such as the ISO 6013 alloy, have improved property levels
and, generally, possess a similar high fracture toughness and resistance to crack propagation as the 2000
series alloys.
Frequently, a particular form of an alloy is developed for a particular aircraft. An outstanding

example of such a development is the use of Hiduminium RR58 as the basis for the main structural
material, designated CM001, for use previously in the Concorde. Hiduminium RR58 is a complex
aluminum–copper–magnesium–nickel–iron alloy developed during the 1939 to 1945 war specifically
for the manufacture of forged components in gas turbine aero engines. The chemical composition of
the version used in the Concorde was decided on the basis of elevated temperature, creep, fatigue, and
tensile testing programs and has the detailed specification of

%Cu %Mg %Si %Fe %Ni %Ti %Al

Minimum 2.25 1.35 0.18 0.90 1.0 – Remainder
Maximum 2.70 1.65 0.25 1.20 1.30 0.20

Generally, CM001 is found to possess better overall strength/fatigue characteristics over a wide range
of temperatures than any of the other possible aluminum alloys.
The latest aluminum alloys to find general use in the aerospace industry are the aluminum–

lithium alloys. Of these, the aluminum–lithium–copper–manganese alloy, 8090, developed in theUnited
Kingdom, is extensively used in the main fuselage structure of GKN Westland Helicopters’ design
EH101; it has also been qualified for Eurofighter 2000 (now named the Typhoon) but has yet to be
embodied. In the United States, the aluminum–lithium–copper alloy, 2095, has been used in the fuse-
lage frames of the F16 as a replacement for 2124, resulting in a fivefold increase in fatigue life and
a reduction in weight. Aluminum–lithium alloys can be successfully welded, possess a high fracture
toughness, and exhibit a high resistance to crack propagation.

10.2 STEEL
Theuse of steel for themanufacture of thin-walled, box-section spars in the 1930s has been supersededby
the aluminum alloys described in Section 10.1. Clearly, its high specific gravity prevents its widespread
use in aircraft construction, but it has retained some value as amaterial for castings for small components
demanding high tensile strengths, high stiffness, and high resistance to wear. Such components include
undercarriage pivot brackets, wing-root attachments, fasteners, and tracks.
Although the attainment of high and ultra-high tensile strengths presents no difficulty with steel,

it is found that other properties are sacrificed and that it is difficult to manufacture into finished
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components. To overcome some of these difficulties, types of steel known as maraging steels were
developed in 1961, from which carbon is either eliminated entirely or present only in very small
amounts. Carbon, while producing the necessary hardening of conventional high-tensile steels, causes
brittleness and distortion; the latter is not easily rectifiable, as machining is difficult and cold form-
ing impracticable. Welded fabrication is also almost impossible or very expensive. The hardening
of maraging steels is achieved by the addition of other elements such as nickel, cobalt, and molyb-
denum. A typical maraging steel would have these elements present in the proportions: nickel
17 to 19%, cobalt 8 to 9%, molybdenum 3 to 3.5%, with titanium 0.15 to 0.25%. The carbon
content would be a maximum of 0.03%, with traces of manganese, silicon, sulfur, phosphorus,
aluminum, boron, calcium, and zirconium. Its 0.2 percent proof stress would be nominally 1400N/mm2

and its modulus of elasticity 180000N/mm2.
The main advantages of maraging steels over conventional low-alloy steels are higher fracture

toughness and notched strength, simpler heat treatment, much lower volume change and distortion
during hardening, verymuch simpler toweld, easier tomachine, and better resistance to stress corrosion/
hydrogen embrittlement. On the other hand, the material cost of maraging steels is three or more times
greater than the cost of conventional steels, although this may be more than offset by the increased cost
of fabricating a complex component from the latter steel. Maraging steels have been used in aircraft
arrester hooks, rocket motor cases, helicopter undercarriages, gears, ejector seats, and various structural
forgings.
In addition to the preceding, steel in its stainless form has found applications primarily in the

construction of supersonic and hypersonic experimental and research aircraft, where temperature effects
are considerable. Stainless steel formed the primary structural material in the Bristol 188, built to
investigate kinetic heating effects, and also in the American rocket aircraft, the X-15, capable of speeds
of the order of Mach 5–6.

10.3 TITANIUM
The use of titanium alloys increased significantly in the 1980s, particularly in the construction of
combat aircraft as opposed to transport aircraft. This increase continued in the 1990s to the stage
where, for combat aircraft, the percentage of titanium alloy as a fraction of structural weight is of the
same order as that of aluminum alloy. Titanium alloys possess high specific properties, have a good
fatigue strength/tensile strength ratio with a distinct fatigue limit, and have some retain considerable
strength at temperatures up to 400 to 500◦C. Generally, there is also a good resistance to corrosion
and corrosion fatigue, although properties are adversely affected by exposure to temperature and stress
in a salt environment. The latter poses particular problems in the engines of carrier-operated aircraft.
Further disadvantages are a relatively high density so that weight penalties are imposed if the alloy
is extensively used, coupled with high primary and high fabrication costs, approximately seven times
those of aluminum and steel.
In spite of this, titanium alloys were used previously in the airframe and engines of Concorde,

while the Tornado wing carry-through box is fabricated from a weldable medium-strength titanium
alloy. Titanium alloys are also used extensively in the F15 and F22 American fighter aircraft and are
incorporated in the tail assembly of the Boeing 777 civil airliner. Other uses include forged components
such as flap and slat tracks and undercarriage parts.
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New fabrication processes (e.g., superplastic forming combinedwith diffusion bonding) enable large
and complex components to be produced, resulting in a reduction in production man-hours and weight.
Typical savings are 30 percent in man-hours, 30 percent in weight, and 50 percent in cost compared
with conventional riveted titanium structures. It is predicted that the number of titanium components
fabricated in this way for aircraft will increase significantly and include items such as access doors,
sheet for areas of hot gas impingement, and so forth.

10.4 PLASTICS
Plain plastic materials have specific gravities of approximately unity and are therefore considerably
heavier than wood, although of comparable strength. On the other hand, their specific gravities are less
than half those of the aluminum alloys so that they find uses as windows or lightly stressed parts whose
dimensions are established by handling requirements rather than strength. They are also particularly
useful as electrical insulators and as energy-absorbing shields for delicate instrumentation and even
structures where severe vibration such as in a rocket or space shuttle launches occurs.

10.5 GLASS
The majority of modern aircraft have cabins pressurized for flight at high altitudes. Windscreens and
windows are therefore subjected to loads normal to their midplanes. Glass is frequently thematerial used
for this purpose in the form of plain or laminated plate or heat-strengthened plate. The types of plate
glass used in aircraft have a modulus of elasticity between 70000 and 75000N/mm2, with a modulus
of rupture in bending of 45N/mm2. Heat-strengthened plate has a modulus of rupture of about four and
a half times this figure.

10.6 COMPOSITE MATERIALS
Composite materials consist of strong fibers such as glass or carbon set in a matrix of plastic or epoxy
resin, which is mechanically and chemically protective. The fibers may be continuous or discontinuous
but possess a strength very much greater than that of the same bulk materials. For example, carbon fibers
have a tensile strength of the order of 2400N/mm2 and a modulus of elasticity of 400000N/mm2.
A sheet of fiber-reinforced material is anisotropic—in other words, its properties depend on the

direction of the fibers. Generally, therefore, in structural form, two or more sheets are sandwiched
together to form a lay-up so that the fiber directions match those of the major loads.
In the early stages of the development of composite materials, glass fibers were used in a matrix

of epoxy resin. This glass-reinforced plastic (GRP) was used for radomes and helicopter blades but
found limited use in components of fixed wing aircraft due to its low stiffness. In the 1960s, new fibrous
reinforcements were introduced; Kevlar, for example, is an aramid material with the same strength as
glass but is stiffer. Kevlar composites are tough but poor in compression and difficult to machine, so they
were used in secondary structures. Another composite, using boron fiber and developed in the United
States, was the first to possess sufficient strength and stiffness for primary structures.
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These composites have now been replaced by carbon-fiber-reinforced plastics (CFRP), which have
similar properties to boron composites but are very much cheaper. Typically, CFRP has a modulus
of the order of three times that of GRP, one and a half times that of a Kevlar composite, and twice
that of aluminum alloy. Its strength is three times that of aluminum alloy, approximately the same as
that of GRP, and slightly less than that of Kevlar composites. CFRP does, however, suffer from some
disadvantages. It is a brittle material and therefore does not yield plastically in regions of high stress
concentration. Its strength is reduced by impact damage which may not be visible, and the epoxy resin
matrices can absorb moisture over a long period, which reduces its matrix-dependent properties, such
as its compressive strength; this effect increases with increase of temperature. Further, the properties
of CFRP are subject to more random variation than those of metals. All these factors must be allowed
for in design. On the other hand, the stiffness of CFRP is much less affected than its strength by the
preceding, and it is less prone to fatigue damage than metals. It is estimated that replacing 40 percent
of an aluminum alloy structure by CFRP would result in a 12 percent saving in total structural weight.
CFRP is included in the wing, tailplane, and forward fuselage of the latest Harrier development, is

used in the Tornado taileron, and has been used to construct a complete Jaguar wing and engine bay
door for testing purposes. The use of CFRP in the fabrication of helicopter blades has led to significant
increases in their service life, where fatigue resistance rather than stiffness is of primary importance.
Figure 10.1 shows the structural complexity of a Sea King helicopter rotor blade, which incorporates
CFRP, GRP, stainless steel, a honeycomb core, and foam filling. An additional advantage of the use
of composites for helicopter rotor blades is that the molding techniques used allow variations of cross
section along the span, resulting in substantial aerodynamic benefits. This approach is being used in the
fabrication of the main rotor blades of the GKN Westland Helicopters EH101.

Fig. 10.1

Sectional view of helicopter main rotor blade (courtesy Royal Aeronautical Society, Aerospace magazine).



10.7 Properties of Materials 333

A composite (fiberglass and aluminum) is used in the tail assembly of the Boeing 777, while the
leading edge of the Airbus A310–300/A320 fin assembly is of conventional reinforced glass fiber
construction, reinforced at the nose to withstand bird strikes. A complete composite airframe was
produced for theBeechcraft Starship turboprop executive aircraft,which, however,was not a commercial
success due to its canard configuration causing drag and weight penalties.
The development of composite materials is continuing with research into the removal of strength-

reducing flaws and local imperfections from carbon fibers. Other matrices, such as polyetheretherketone
which absorbs much less moisture than epoxy resin, has an indefinite shelf life, and performs well under
impact, are being developed; fabrication, however, requires much higher temperatures. Metal matrix
composites such as graphite–aluminum and boron–aluminum are lightweight and retain their strength
at higher temperatures than aluminum alloys but are expensive to produce.
Generally, the use of composites in aircraft construction appears to have reached a plateau, particu-

larly in civil subsonic aircraft,where the fraction of the structure comprising composites is approximately
15 percent. This is due largely to the greater cost of manufacturing composites comparedwith aluminum
alloy structures, since composites require handcrafting of the materials and manual construction pro-
cesses. These increased costs are particularly important in civil aircraft construction and are becoming
increasingly important in military aircraft.

10.7 PROPERTIES OF MATERIALS
In Sections 10.1 to 10.6, we discussed the various materials used in aircraft construction and listed
some of their properties. We shall now examine in more detail their behavior under load and also define
different types of material.

Ductility
A material is said to be ductile if it is capable of withstanding large strains under load before fracture
occurs. These large strains are accompanied by a visible change in cross-sectional dimensions and
therefore give warning of impending failure. Materials in this category include mild steel, aluminum,
and some of its alloys, copper, and polymers.

Brittleness
A brittle material exhibits little deformation before fracture, the strain normally being below 5 percent.
Brittlematerials thereforemay fail suddenlywithout visiblewarning. Included in this group are concrete,
cast iron, high-strength steel, timber, and ceramics.

Elastic Materials
Amaterial is said to be elastic if deformations disappear completely on removal of the load. All known
engineering materials are, in addition, linearly elasticwithin certain limits of stress so that strain, within
these limits, is directly proportional to stress.
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Plasticity
A material is perfectly plastic if no strain disappears after the removal of load. Ductile materials are
elastoplastic and behave in an elastic manner until the elastic limit is reached, after which they behave
plastically. When the stress is relieved, the elastic component of the strain is recovered, but the plastic
strain remains as a permanent set.

Isotropic Materials
In many materials, the elastic properties are the same in all directions at each point in the material,
although they may vary from point to point; such a material is known as isotropic.An isotropic material
having the same properties at all points is known as homogeneous (e.g., mild steel).

Anisotropic Materials
Materials having varying elastic properties in different directions are known as anisotropic.

Orthotropic Materials
Although a structural material may possess different elastic properties in different directions, this vari-
ation may be limited, as in the case of timber, which has just two values of Young’s modulus, one in
the direction of the grain and one perpendicular to the grain. A material whose elastic properties are
limited to three different values in three mutually perpendicular directions is known as orthotropic.

10.7.1 Testing of Engineering Materials
The properties of engineering materials are determined mainly by the mechanical testing of specimens
machined to prescribed sizes and shapes. The testing may be static or dynamic in nature depend-
ing on the particular property being investigated. Possibly the most common mechanical static tests
are tensile and compressive tests which are carried out on a wide range of materials. Ferrous and
nonferrous metals are subjected to both forms of test, while compression tests are usually carried out
on many nonmetallic materials. Other static tests include bending, shear, and hardness tests, while
the toughness of a material—in other words, its ability to withstand shock loads—is determined by
impact tests.

Tensile Tests
Tensile tests are normally carried out on metallic materials and, in addition, timber. Test pieces are
machined from a batch of material, their dimensions being specified by Codes of Practice. They are
commonly circular in cross section, although flat test pieces having rectangular cross sections are used
when the batch of material is in the form of a plate. A typical test piece would have the dimensions
specified in Fig. 10.2. Usually, the diameter of a central portion of the test piece is fractionally less than
that of the remainder to ensure that the test piece fractures between the gauge points.
Before the test begins, the mean diameter of the test piece is obtained by taking measurements

at several sections using a micrometer screw gauge. Gauge points are punched at the required gauge
length, the test piece is placed in the testing machine, and a suitable strain measuring device, usually
an extensometer, is attached to the test piece at the gauge points so that the extension is measured
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Fig. 10.2

Standard cylindrical test piece.

over the given gauge length. Increments of load are applied and the corresponding extensions recorded.
This procedure continues until yield occurs, when the extensometer is removed as a precaution against
the damage which would be caused if the test piece fractured unexpectedly. Subsequent extensions are
measured by dividers placed in the gauge points until, ultimately, the test piece fractures. The final
gauge length and the diameter of the test piece in the region of the fracture are measured so that the
percentage elongation and percentage reduction in area may be calculated. These two parameters give
a measure of the ductility of the material.
A stress–strain curve is drawn (see Figs. 10.9 and 10.13), the stress normally being calculated on

the basis of the original cross-sectional area of the test piece—that is, a nominal stress as opposed to
an actual stress (which is based on the actual area of cross section).
For ductile materials there is a marked difference in the latter stages of the test, as a considerable

reduction in cross-sectional area occurs between yield and fracture. From the stress–strain curve, the
ultimate stress, the yield stress, and Young’s modulus, E, are obtained.
There are a number of variations on the basic tensile test just described. Some of these depend

on the amount of additional information required and some on the choice of equipment. There is a
wide range of strain measuring devices to choose from, extending from different makes of mechanical
extensometer, such as Huggenberger, Lindley, Cambridge, to the electrical resistance strain gauge. The
last would normally be used on flat test pieces, one on each face to eliminate the effects of possible
bending. At the same time, a strain gauge could be attached in a direction perpendicular to the direction
of loading so that lateral strains are measured. The ratio lateral strain/longitudinal strain is Poisson’s
ratio, ν.
Testing machines are usually driven hydraulically. More sophisticated versions use load cells to

record load and automatically plot load against extension or stress against strain on a pen recorder as
the test proceeds, an advantage when investigating the distinctive behavior of mild steel at yield.

Compression Tests
A compression test is similar in operation to a tensile test, with the obvious difference that the load
transmitted to the test piece is compressive rather than tensile. This is achieved by placing the test
piece between the platens of the testing machine and reversing the direction of loading. Test pieces are
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normally cylindrical and are limited in length to eliminate the possibility of failure being caused by
instability. Again, contractions are measured over a given gauge length by a suitable strain measuring
device.
Variations in test pieces occur when only the ultimate strength of the material in compression is

required. For this purpose, concrete test pieces may take the form of cubes having edges approximately
10 cm long, while mild steel test pieces are still cylindrical in section but are of the order of 1cm long.

Bending Tests
Many structural members are subjected primarily to bending moments. Bending tests are therefore
carried out on simple beams constructed from the different materials to determine their behavior under
this type of load.
Two forms of loading are used, the choice depending on the type specified in Codes of

Practice for the particular material. In the first, a simply supported beam is subjected to a “two-point”
loading system, as shown in Fig. 10.3(a). Two concentrated loads are applied symmetrically to the

Fig. 10.3

Bending test on a beam, “two-point” load.
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Fig. 10.4

Bending test on a beam, single load.

beam, producing zero shear force and constant bending moment in the central span of the beam
(Fig. 10.3(b) and (c)). The condition of pure bending is therefore achieved in the central span.
The second form of loading system consists of a single concentrated load at midspan (Fig. 10.4(a))

which produces the shear force and bending moment diagrams shown in Fig. 10.4(b) and (c).
The loads may be applied manually by hanging weights on the beam or by a testing machine.

Deflections are measured by a dial gauge placed underneath the beam. From the recorded results, a
load–deflection diagram is plotted.
For most ductile materials, the test beams continue to deform without failure and fracture does not

occur. Thus, plastic properties—for example, the ultimate strength in bending—cannot be determined
for such materials. In the case of brittle materials, including cast iron, timber, and various plastics,
failure does occur so that plastic properties can be evaluated. For such materials, the ultimate strength
in bending is defined by the modulus of rupture. This is taken to be the maximum direct stress in
bending, σx,u, corresponding to the ultimate moment Mu, and is assumed to be related to Mu by the
elastic relationship

σx,u = Mu
I
ymax
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Other bending tests are designed to measure the ductility of a material and involve the bending of a bar
around a pin. The angle of bending at which the bar starts to crack is then taken as an indication of its
ductility.

Shear Tests
Twomain types of shear test are used to determine the shear properties ofmaterials. One type investigates
the direct or transverse shear strength of a material and is used in connection with the shear strength of
bolts, rivets, and beams. A typical arrangement is shown diagrammatically in Fig. 10.5, where the test
piece is clamped to a block and the load is applied through the shear tool until failure occurs. In the
arrangement shown, the test piece is subjected to double shear, whereas if it is extended only partially
across the gap in the block, it would be subjected to single shear. In either case, the average shear
strength is taken as the maximum load divided by the shear resisting area.
The other type of shear test is used to evaluate the basic shear properties of a material, such as

the shear modulus, G, the shear stress at yield, and the ultimate shear stress. In the usual form of
test, a solid circular-section test piece is placed in a torsion machine and twisted by controlled incre-
ments of torque. The corresponding angles of twist are recorded and torque–twist diagrams are plotted,
from which the shear properties of the material are obtained. The method is similar to that used to
determine the tensile properties of a material from a tensile test and uses relationships derived in
Chapter 3.

Hardness Tests
The machinability of a material and its resistance to scratching or penetration are determined by its
“hardness.” There also appears to be a connection between the hardness of some materials and their
tensile strength so that hardness tests may be used to determine the properties of a finished structural
member where tensile and other tests would be impracticable. Hardness tests are also used to investigate
the effects of heat treatment, hardening and tempering, and cold forming. Two types of hardness tests
are in common use: indentation tests and scratch and abrasion tests.
Indentation tests may be subdivided into two classes: static and dynamic. Of the static tests, the

Brinell is the most common. In this, a hardened steel ball is pressed into the material under test by a
static load acting for a fixed period of time. The load in kg divided by the spherical area of the indentation

Fig. 10.5

Shear test.
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Fig. 10.6

Brinell hardness test.

in mm2 is called the Brinell hardness number (BHN). In Fig. 10.6, if D is the diameter of the ball, F is
the load in kg, h is the depth of the indentation, and d is the diameter of the indentation, then

BHN = F

πDh
= 2F

πD[D− √
D2− d2]

In practice, the hardness number of a given material is found to vary with F andD so that for uniformity
the test is standardized. For steel and hardmaterials F=3000kg andD=10mm,while for softmaterials,
F=500kg and D=10mm; in addition, the load is usually applied for 15s.
In the Brinell test, the dimensions of the indentation are measured by means of a microscope. To

avoid this rather tedious procedure, direct reading machines have been devised, of which the Rockwell
is typical. The indenting tool, again a hardened sphere, is first applied under a definite light load. This
indenting tool is then replaced by a diamond cone with a rounded point which is then applied under a
specified indentation load. The difference between the depth of the indentation under the two loads is
taken as a measure of the hardness of the material and is read directly from the scale.
A typical dynamic hardness test is performed by the Shore Scleroscope, which consists of a small

hammer approximately 20mm long and 6mm in diameter fitted with a blunt, rounded, diamond point.
The hammer is guided by a vertical glass tube and allowed to fall freely from a height of 25cm onto
the specimen, which it indents before rebounding. A certain proportion of the energy of the hammer
is expended in forming the indentation so that the height of the rebound, which depends on the energy
still possessed by the hammer, is taken as a measure of the hardness of the material.
A number of tests have been devised to measure the “scratch hardness” of materials. In one test, the

smallest load in grams which, when applied to a diamond point, produces a scratch visible to the naked
eye on a polished specimen of material is called its hardness number. In other tests, the magnitude of
the load required to produce a definite width of scratch is taken as the measure of hardness. Abrasion
tests, involving the shaking over a period of time of several specimens placed in a container, measure
the resistance to wear of some materials. In some cases, there appears to be a connection between wear
and hardness number, although the results show no level of consistency.

Impact Tests
It has been found that certain materials, particularly heat-treated steels, are susceptible to failure under
shock loading, whereas an ordinary tensile test on the same material would show no abnormality.



340 CHAPTER 10 Materials

Fig. 10.7

Izod impact test.

Fig. 10.8

Charpy impact test.

Impact tests measure the ability of materials to withstand shock loads and provide an indication of their
toughness. Two main tests are in use: the Izod and the Charpy.
Both tests rely on a striker or weight attached to a pendulum. The pendulum is released from a fixed

height, theweight strikes a notched test piece, and the angle throughwhich the pendulum then swings is a
measure of the toughness of the material. The arrangement for the Izod test is shown diagrammatically
in Fig. 10.7(a). The specimen and the method of mounting are shown in detail in Fig. 10.7(b). The
Charpy test is similar in operation except that the test piece is supported in a different manner, as shown
in the plan view in Fig. 10.8.

10.7.2 Stress–Strain Curves
We shall now examine in detail the properties of the different materials from the viewpoint of the results
obtained from tensile and compression tests.
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Fig. 10.9

Stress–strain curve for mild steel.

Low Carbon Steel (Mild Steel)
A nominal stress–strain curve for mild steel, a ductile material, is shown in Fig. 10.9. From 0 to “a”,
the stress–strain curve is linear, the material in this range obeying Hooke’s law. Beyond “a,” the limit
of proportionality, stress is no longer proportional to strain, and the stress–strain curve continues to
“b,” the elastic limit, which is defined as the maximum stress that can be applied to a material without
producing a permanent plastic deformation or permanent set when the load is removed. In other words,
if the material is stressed beyond “b” and the load then removed, a residual strain exists at zero load.
For many materials, it is impossible to detect a difference between the limit of proportionality and the
elastic limit. From 0 to “b,” the material is said to be in the elastic range, while from “b” to fracture, the
material is in the plastic range. The transition from the elastic to the plastic range may be explained by
considering the arrangement of crystals in the material. As the load is applied, slipping occurs between
the crystals which are aligned most closely to the direction of load. As the load is increased, more and
more crystals slip with each equal load increment until appreciable strain increments are produced and
the plastic range is reached.
A further increase in stress from “b” results in the mild steel reaching its upper yield point at

“c,” followed by a rapid fall in stress to its lower yield point at “d.” The existence of a lower yield
point for mild steel is a peculiarity of the tensile test wherein the movement of the ends of the test
piece produced by the testing machine does not proceed as rapidly as its plastic deformation; the load
therefore decreases, as does the stress. From “d” to “f,” the strain increases at a roughly constant value
of stress until strain hardening again causes an increase in stress. This increase in stress continues,
accompanied by a large increase in strain to “g,” the ultimate stress, σult, of the material. At this point,
the test piece begins, visibly, to “neck,” as shown in Fig. 10.10. The material in the test piece in the
region of the “neck” is almost perfectly plastic at this stage, and from this point onward to fracture,
there is a reduction in nominal stress.
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Fig. 10.10

“Necking” of a test piece in the plastic range.

Fig. 10.11

“Cup-and-cone” failure of a mild steel test piece.

For mild steel, yielding occurs at a stress of the order of 300N/mm2. At fracture, the strain (i.e., the
elongation) is of the order of 30 percent. The gradient of the linear portion of the stress–strain curve
gives a value for Young’s modulus in the region of 200 000N/mm2.
The characteristics of the fracture are worthy of examination. In a cylindrical test piece, the two

halves of the fractured test piece have ends which form a “cup and cone” (Fig. 10.11). The actual failure
planes in this case are inclined at approximately 45◦ to the axis of loading and coincide with planes of
maximum shear stress. Similarly, if a flat tensile specimen of mild steel is polished and then stressed, a
pattern of fine lines appears on the polished surface at yield. These lines, which were first discovered by
Lüder in 1854, intersect approximately at right angles and are inclined at 45◦ to the axis of the specimen,
thereby coinciding with planes of maximum shear stress. These forms of yielding and fracture suggest
that the crystalline structure of the steel is relatively weak in shear, with yielding taking the form of the
sliding of one crystal plane over another rather than the tearing apart of two crystal planes.
The behavior of mild steel in compression is very similar to its behavior in tension, particularly in

the elastic range. In the plastic range, it is not possible to obtain ultimate and fracture loads, since, due
to compression, the area of cross section increases as the load increases, producing a “barrelling” effect,
as shown in Fig. 10.12. This increase in cross-sectional area tends to decrease the true stress, thereby
increasing the load resistance. Ultimately a flat disc is produced. For design purposes, the ultimate
stresses of mild steel in tension and compression are assumed to be the same.
Higher grades of steel have greater strengths than mild steel but are not as ductile. They also possess

the same Young’s modulus so that the higher stresses are accompanied by higher strains.

Aluminum
Aluminum and some of its alloys are also ductile materials, although their stress–strain curves do not
have the distinct yield stress of mild steel. A typical stress–strain curve is shown in Fig. 10.13. The
points “a” and “b” again mark the limit of proportionality and elastic limit, respectively, but are difficult
to determine experimentally. Instead, a proof stress is defined which is the stress required to produce a
given permanent strain on removal of the load. In Fig. 10.13, a line drawn parallel to the linear portion
of the stress–strain curve from a strain of 0.001 (i.e., a strain of 0.1 percent) intersects the stress–strain
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Fig. 10.12

“Barrelling” of a mild steel test piece in compression.

Fig. 10.13

Stress–strain curve for aluminum.

Fig. 10.14

“Double-cup” failure of an aluminum alloy test piece.

curve at the 0.1 percent proof stress. For elastic design, this, or the 0.2 percent proof stress, is taken
as the working stress. Beyond the limit of proportionality, the material extends plastically, reaching its
ultimate stress, σult, at “d” before finally fracturing under a reduced nominal stress at “f.”
A feature of the fracture of aluminum alloy test pieces is the formation of a “double cup” as shown

in Fig. 10.14, implying that failure was initiated in the central portion of the test piece, while the outer
surfaces remained intact. Again, considerable “necking” occurs.
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In compression tests on aluminum and its ductile alloys, similar difficulties are encountered to those
experienced with mild steel. The stress–strain curve is very similar in the elastic range to that obtained
in a tensile test, but the ultimate strength in compression cannot be determined; in design its value is
assumed to coincide with that in tension.
Aluminum and its alloys can suffer a form of corrosion particularly in the salt-laden atmosphere of

coastal regions. The surface becomes pitted and covered by a white, furry deposit. This can be prevented
by an electrolytic process called anodizing, which covers the surface with an inert coating. Aluminum
alloys will also corrode if they are placed in direct contact with other metals, such as steel. To prevent
this, plastic is inserted between the possible areas of contact.

Brittle Materials
These include cast iron, high-strength steel, concrete, timber, ceramics, glass, and so on. The plastic
range for brittle materials extends to only small values of strain. A typical stress–strain curve for a brittle
material under tension is shown in Fig. 10.15. Little or no yielding occurs, and fracture takes place very
shortly after the elastic limit is reached.
The fracture of a cylindrical test piece takes the form of a single failure plane approximately per-

pendicular to the direction of loading with no visible “necking” and an elongation of the order of 2 to
3 percent.
In compression, the stress–strain curve for a brittle material is very similar to that in tension except

that failure occurs at a much higher value of stress; for concrete, the ratio is of the order of 10 :1.
This is thought to be due to the presence of microscopic cracks in the material, giving rise to high
stress concentrations which are more likely to have a greater effect in reducing tensile strength than
compressive strength.

Composites
Fiber composites have stress–strain characteristics which indicate that they are brittle materials
(Fig. 10.16). There is little or no plasticity, and the modulus of elasticity is less than that of steel

Fig. 10.15

Stress–strain curve for a brittle material.
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Fig. 10.16

Stress–strain curve for a fiber composite.

and aluminum alloy. However, the fibers themselves can have much higher values of strength and mod-
ulus of elasticity than the composite. For example, carbon fibers have a tensile strength of the order
2400N/mm2 and a modulus of elasticity of 400000N/mm2.
Fiber composites are highly durable, require no maintenance, and can be used in hostile chemical

and atmospheric environments; vinyls and epoxy resins provide the best resistance.
All the stress–strain curves described in the preceding discussion are those produced in tensile or

compression tests in which the strain is applied at a negligible rate. A rapid strain application would
result in significant changes in the apparent properties of the materials, giving possible variations in
yield stress of up to 100 percent.

10.7.3 Strain Hardening
The stress–strain curve for a material is influenced by the strain history, or the loading and unloading
of the material, within the plastic range. For example, in Fig. 10.17, a test piece is initially stressed
in tension beyond the yield stress at “a” to a value at “b.” The material is then unloaded to “c” and
reloaded to “f,” producing an increase in yield stress from the value at “a” to the value at “d.” Subsequent
unloading to “g” and loading to “j” increases the yield stress still further to the value at “h.” This increase
in strength resulting from the loading and unloading is known as strain hardening. It can be seen from
Fig. 10.17 that the stress–strain curve during the unloading and loading cycles forms loops (the shaded
areas in Fig. 10.17). These indicate that strain energy is lost during the cycle, the energy being dissipated
in the form of heat produced by internal friction. This energy loss is known as mechanical hysteresis
and the loops as hysteresis loops. Although the ultimate stress is increased by strain hardening, it is not
influenced to the same extent as yield stress. The increase in strength produced by strain hardening is
accompanied by decreases in toughness and ductility.
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Fig. 10.17

Strain hardening of a material.

Fig. 10.18

Typical creep curve.

10.7.4 Creep and Relaxation
We have seen in Chapter 1 that a given load produces a calculable value of stress in a structural member
and hence a corresponding value of strain once the full value of the load is transferred to the member.
However, after this initial or “instantaneous” stress and its corresponding value of strain have been
attained, a great number of structural materials continue to deform slowly and progressively under load
over a period of time. This behavior is known as creep. A typical creep curve is shown in Fig. 10.18.
Some materials, such as plastics and rubber, show creep at room temperatures, but most structural

materials require high temperatures or long-duration loading at moderate temperatures. In some “soft”
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metals, such as zinc and lead, creep occurs over a relatively short period of time, whereas materials
such as concrete may be subject to creep over a period of years. Creep occurs in steel to a slight extent
at normal temperatures but becomes very important at temperatures above 316◦C.
Closely related to creep is relaxation.Whereas creep involves an increase in strain under constant

stress, relaxation is the decrease in stress experienced over a period of time by a material subjected to
a constant strain.

10.7.5 Fatigue
Structuralmembers are frequently subjected to repetitive loadingover a longperiod of time. For example,
the members of a bridge structure suffer variations in loading possibly thousands of times a day as traffic
moves over the bridge. In these circumstances, a structural member may fracture at a level of stress
substantially below the ultimate stress for nonrepetitive static loads; this phenomenon is known as
fatigue.
Fatigue cracks are most frequently initiated at sections in a structural member where changes in

geometry, such as holes, notches, or sudden changes in section, cause stress concentrations. Designers
seek to eliminate such areas by ensuring that rapid changes in section are as smooth as possible. At
re-entrant corners, for example, fillets are provided, as shown in Fig. 10.19.
Other factors which affect the failure of a material under repetitive loading are the type of loading

(fatigue is primarily a problem with repeated tensile stresses due, probably, to the fact that microscopic
cracks can propagate more easily under tension), temperature, the material, surface finish (machine
marks are potential crack propagators), corrosion, and residual stresses produced by welding.
Frequently, in structural members, an alternating stress, σalt, is superimposed on a static or mean

stress, σmean, as illustrated in Fig. 10.20. The value of σalt is the most important factor in determining the
number of cycles of load that produce failure. The stress σalt that can bewithstood for a specified number
of cycles is called the fatigue strength of thematerial. Somematerials, such asmild steel, possess a stress
level that can bewithstood for an indefinite number of cycles. This stress is known as the endurance limit
of the material; no such limit has been found for aluminum and its alloys. Fatigue data are frequently
presented in the form of an S–n curve or stress–endurance curve, as shown in Fig. 10.21.

Fig. 10.19

Stress concentration location.
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Fig. 10.20

Alternating stress in fatigue loading.

Fig. 10.21

Stress–endurance curves.

In many practical situations, the amplitude of the alternating stress varies and is frequently random
in nature. The S–n curve does not, therefore, apply directly and an alternativemeans of predicting failure
is required. Miner’s cumulative damage theory suggests that failure occurs when

n1
N1

+ n2
N2

+ ·· ·+ nr
Nr

= 1 (10.1)

where n1,n2, . . . , nr are the number of applications of stresses σalt , σmean, and N1,N2, . . . ,Nr are the
number of cycles to failure of stresses σalt , σmean.
We shall examine fatigue and its effect on aircraft design in much greater detail in Chapter 14.
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Problems
P.10.1 Describe a simple tensile test and show, with the aid of sketches, how measures of the ductility of the
material of the specimen may be obtained. Sketch typical stress–strain curves for mild steel and an aluminum alloy
showing their important features.

P.10.2 A bar of metal 25mm in diameter is tested on a length of 250mm. In tension, the results shown in
Table P.10.2(a) were recorded.

Table P.10.2(a)

Load (kN) 10.4 31.2 52.0 72.8
Extension (mm) 0.036 0.089 0.140 0.191

A torsion test gave the results shown in Table P.10.2(b).

Table P.10.2(b)

Torque (kN m) 0.051 0.152 0.253 0.354
Angle of twist (degrees) 0.24 0.71 1.175 1.642

Represent these results in graphical form and hence determine Young’s modulus, E; the modulus of rigidity,
G; Poisson’s ratio, ν; and the bulk modulus, K , for the metal.

Ans. E � 205000N/mm2, G � 80700N/mm2, ν � 0.272, K � 148500N/mm2.
P.10.3 The actual stress–strain curve for a particularmaterial is given by σ = Cεn, whereC is a constant. Assuming
that the material suffers no change in volume during plastic deformation, derive an expression for the nominal
stress–strain curve and show that this has a maximum value when ε=n/(1−n).

Ans. σnom=Cεn/(1+ε).

P.10.4 Astructuralmember is to be subjected to a series of cyclic loadswhich produce different levels of alternating
stress as shown in Table P.10.4. Determine whether or not a fatigue failure is probable.

Ans. Not probable (n1/N1+n2/N2+·· ·=0.39).

Table P.10.4
Number of Cycles

Loading Number of Cycles to Failure

1 104 5 × 104

2 105 106

3 106 24 × 107

4 107 12 × 107
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CHAPTER

11Structural Components
of Aircraft

Aircraft are generally built up from the basic components of wings, fuselages, tail units, and control sur-
faces. There are variations in particular aircraft; for example, a delta wing aircraft would not necessarily
possess a horizontal tail, although this is present in a canard configuration such as that of the Eurofighter
(Typhoon). Each component has one or more specific functions and must be designed to ensure that it
can carry out these functions safely. In this chapter, we shall describe the various loads to which aircraft
components are subjected, their function and fabrication, and also the design of connections.

11.1 LOADS ON STRUCTURAL COMPONENTS
The structure of an aircraft is required to support two distinct classes of load: the first, termed ground
loads, includes all loads encountered by the aircraft during movement or transportation on the ground
such as taxiing and landing loads, towing, and hoisting loads, and the second, air loads, comprises
loads www.trafalgar.com/USA/DisplayTour? TourID=8642&RegionID=4&CountryID=0&TypeID=0
&LengthID=3&BudgetID=0&TimeID=49&Keywords=&BrochureTypeID=−1 imposed on the struc-
ture during flight by maneuvers and gusts. In addition, aircraft designed for a particular role encounter
loads peculiar to their sphere of operation. Carrier-borne aircraft, for instance, are subjected to catapult
takeoff and arrested landing loads: most large civil and practically all military aircraft have pressurized
cabins for high-altitude flying; amphibious aircraft must be capable of landing on water, and aircraft
designed to fly at high speeds at low altitude, such as the Tornado, require a structure of above-average
strength to withstand the effects of flight in extremely turbulent air.
The two classes of loads may be further divided into surface forces which act upon the surface of

the structure, such as aerodynamic and hydrostatic pressure, and body forces which act over the volume
of the structure and are produced by gravitational and inertial effects. Calculation of the distribution of
aerodynamic pressure over the various surfaces of an aircraft’s structure is presented in numerous texts
on aerodynamics and will therefore not be attempted here. We shall, however, discuss the types of load
induced by these various effects and their action on the different structural components.
Basically, all air loads are the results of the pressure distribution over the surfaces of the skin produced

by steady flight, maneuver, or gust conditions. Generally, these results cause direct loads, bending, shear,
and torsion in all parts of the structure in addition to local, normal pressure loads imposed on the skin.
Conventional aircraft usually consist of fuselage, wings, and tailplane. The fuselage contains crew

and payload, the latter being passengers, cargo, weapons, plus fuel, depending on the type of aircraft

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00011-7 351
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Fig. 11.1

Principal aerodynamic forces on an aircraft during flight.

Fig. 11.2

(a) Pressure distribution around an aerofoil; (b) transference of lift and drag loads to the AC.

and its function; the wings provide the lift, and the tailplane is the main contributor to directional
control. In addition, ailerons, elevators, and the rudder enable the pilot to maneuver the aircraft and
maintain its stability in flight, while wing flaps provide the necessary increase of lift for takeoff and
landing. Figure 11.1 shows typical aerodynamic force resultants experienced by an aircraft in steady
flight.
The force on an aerodynamic surface (wing, vertical or horizontal tail) results from a differential

pressure distribution caused by incidence, camber, or a combination of both. Such a pressure distribution,
shown in Fig. 11.2(a), has vertical (lift) and horizontal (drag) resultants acting at a center of pressure
(CP). (In practice, lift and drag are measured perpendicular and parallel to the flight path, respectively.)
Clearly, the position of the CP changes as the pressure distribution varies with speed or wing incidence.
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Fig. 11.3

Typical lift distribution for a wing/fuselage combination.

However, there is, conveniently, a point in the aerofoil section about which the moment due to the lift
and drag forces remains constant. We therefore replace the lift and drag forces acting at the CP by
lift and drag forces acting at the aerodynamic center (AC) plus a constant moment M0, as shown in
Fig. 11.2(b). (Actually, at high Mach numbers the position of the AC changes due to compressibility
effects.)
While the chordwise pressure distribution fixes the position of the resultant aerodynamic load in

the wing cross section, the spanwise distribution locates its position in relation, say, to the wing root.
A typical distribution for a wing/fuselage combination is shown in Fig. 11.3. Similar distributions occur
on horizontal and vertical tail surfaces.
Therefore, we see that wings, tailplane, and the fuselage are each subjected to direct, bending,

shear, and torsional loads and must be designed to withstand critical combinations of these. Note that
maneuvers and gusts do not introduce different loads but result only in changes of magnitude and
position of the type of existing loads shown in Fig. 11.1. Over and above these basic in-flight loads,
fuselages may be pressurized and thereby support hoop stresses, wings may carry weapons and/or extra
fuel tanks with resulting additional aerodynamic and body forces contributing to the existing bending,
shear, and torsion, while the thrust and weight of engines may affect either fuselage or wings depending
on their relative positions.
Ground loads encountered in landing and taxiing subject the aircraft to concentrated shock loads

through the undercarriage system. The majority of aircraft have their main undercarriage located in the
wings, with a nosewheel or tailwheel in the vertical plane of symmetry. Clearly the position of the main
undercarriage should be such as to produce minimum loads on the wing structure compatible with the
stability of the aircraft during ground maneuvers. This may be achieved by locating the undercarriage
just forward of the flexural axis of the wing and as close to the wing root as possible. In this case, the
shock landing load produces a given shear, minimum bending plus torsion, with the latter being reduced
as far as practicable by offsetting the torque caused by the vertical load in the undercarriage leg by a
torque in an opposite sense due to braking.
Other loads include engine thrust on the wings or fuselage which acts in the plane of symmetry

but may, in the case of engine failure, cause severe fuselage bending moments, as shown in Fig. 11.4;
concentrated shock loads during a catapult launch; and hydrodynamic pressure on the fuselages or floats
of seaplanes.
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Fig. 11.4

Fuselage and wing bending caused by an unsymmetrical engine load.

In Chapter 12, we shall examine in detail the calculation of ground and air loads for a variety of
cases.

11.2 FUNCTION OF STRUCTURAL COMPONENTS
The basic functions of an aircraft’s structure are to transmit and resist the applied loads, to provide an
aerodynamic shape, and to protect passengers, payload, systems, and so forth from the environmental
conditions encountered in flight. These requirements, in most aircraft, result in thin shell structures
where the outer surface or skin of the shell is usually supported by longitudinal stiffening members
and transverse frames to enable it to resist bending, compressive, and torsional loads without buckling.
Such structures are known as semi-monocoque, while thin shells which rely entirely on their skins for
their capacity to resist loads are referred to as monocoque.
First, we shall consider wing sections which, while performing the same function, can differ widely

in their structural complexity, as can be seen by comparing Figs. 11.5 and 11.6. In Fig. 11.5, the wing of
the small, light passenger aircraft, the De Havilland Canada Twin Otter, comprises a relatively simple
arrangement of two spars, ribs, stringers, and skin, while the wing of the Harrier in Fig. 11.6 consists of
numerous spars, ribs, and skin. However, no matter how complex the internal structural arrangement,
the different components perform the same kind of function. The shape of the cross section is governed
by aerodynamic considerations and clearly must be maintained for all combinations of load; this is
one of the functions of the ribs. They also act with the skin in resisting the distributed aerodynamic
pressure loads; they distribute concentrated loads (e.g., undercarriage and additional wing store loads)
into the structure and redistribute stress around discontinuities, such as undercarriage wells, inspection
panels, and fuel tanks, in the wing surface. Ribs increase the column buckling stress of the longitudinal
stiffeners by providing end restraint and establishing their column length; in a similar manner, they
increase the plate buckling stress of the skin panels.
The dimensions of ribs are governed by their spanwise position in the wing and by the loads they are

required to support. In the outer portions of the wing, where the cross section may be relatively small if
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the wing is tapered and the loads are light, ribs act primarily as formers for the aerofoil shape. A light
structure is sufficient for this purpose, whereas at sections closer to the wing root, where the ribs are
required to absorb and transmit large, concentrated applied loads, such as those from the undercarriage,
engine thrust, and fuselage attachment point reactions, a much more rugged construction is necessary.
Between these two extremes are ribs which support hinge reactions from ailerons, flaps, and other
control surfaces, plus the many internal loads from fuel, armament, and systems installations.
The primary function of the wing skin is to form an impermeable surface for supporting the aerody-

namic pressure distribution from which the lifting capability of the wing is derived. These aerodynamic
forces are transmitted in turn to the ribs and stringers by the skin through plate and membrane action.
Resistance to shear and torsional loads is supplied by shear stresses developed in the skin and spar webs,
while axial and bending loads are reacted by the combined action of skin and stringers.
Although the thin skin is efficient for resisting shear and tensile loads, it buckles under comparatively

low compressive loads. Rather than increase the skin thickness and suffer a consequent weight penalty,
stringers are attached to the skin and ribs, thereby dividing the skin into small panels and increasing the
buckling and failing stresses. This stabilizing action of the stringers on the skin is, in fact, reciprocated
to some extent, although the effect normal to the surface of the skin is minimal. Stringers rely chiefly on
rib attachments for preventing column action in this direction. We have noted in the previous paragraph
the combined action of stringers and skin in resisting axial and bending loads.
The role of spar webs in developing shear stresses to resist shear and torsional loads has been

mentioned previously; they perform a secondary but significant function in stabilizing, with the skin,
the spar flanges, or caps, which are therefore capable of supporting large compressive loads from axial
and bending effects. In turn, spar webs exert a stabilizing influence on the skin in a similar manner to
the stringers.
While the majority of the preceding remarks have been directed toward wing structures, they apply,

as can be seen by referring to Figs. 11.5 and 11.6, to all the aerodynamic surfaces, namely, wings,
horizontal and vertical tails, except in the obvious cases of undercarriage loading, engine thrust, and
so on.
Fuselages, while of different shape to the aerodynamic surfaces, comprise members which perform

similar functions to their counterparts in the wings and tailplane. However, there are differences in the
generation of the various types of load.Aerodynamic forces on the fuselage skin are relatively low; on the
other hand, the fuselage supports large, concentrated loads such as wing reactions, tailplane reactions,
and undercarriage reactions, and it carries payloads of varying size and weight, which may cause large
inertia forces. Furthermore, aircraft designed for high-altitude flight must withstand internal pressure.
The shape of the fuselage cross section is determined by operational requirements. For example, the
most efficient sectional shape for a pressurized fuselage is circular or a combination of circular elements.
Irrespective of shape, the basic fuselage structure is essentially a single cell thin-walled tube comprising
skin, transverse frames, and stringers; transverse frameswhich extend completely across the fuselage are
known as bulkheads. Three different types of fuselage are shown in Figs. 11.5 to 11.7. In Fig. 11.5, the
fuselage is unpressurized so that, in the passenger-carrying area, a more rectangular shape is employed
tomaximize the space. TheHarrier fuselage in Fig. 11.6 contains the engine, fuel tanks, and so on, so that
its cross-sectional shape is, to some extent, predetermined, while in Fig. 11.7, the passenger-carrying
fuselage of the British Aerospace 146 is pressurized and therefore circular in its cross section.
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Fig. 11.7

British Aerospace 146 (courtesy of British Aerospace).

11.3 FABRICATION OF STRUCTURAL COMPONENTS
The introduction of all-metal, stressed skin aircraft resulted in methods and types of fabrication which
remain in use to the present day. However, improvements in engine performance and advances in
aerodynamics have led to higher maximum lift, higher speeds, and therefore to higher wing loadings
so that improved techniques of fabrication are necessary, particularly in the construction of wings. The
increase in wing loading from about 350N/m2 for 1917–1918 aircraft to around 4800N/m2 for modern
aircraft, coupled with a drop in the structural percentage of the total weight from 30 to 40 to 22 to 25
percent, gives some indication of the improvements in materials and structural design.
For purposes of construction, aircraft are divided into a number of subassemblies. These are built

in specially designed jigs, possibly in different parts of the factory or even different factories, before
being forwarded to the final assembly shop. A typical breakdown into subassemblies of a medium-sized
civil aircraft is shown in Fig. 11.8. Each subassembly relies on numerous minor assemblies such as
spar webs, ribs, and frames, and these, in turn, are supplied with individual components from the detail
workshop.
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Fig. 11.8

Typical subassembly breakdown.

Although the wings (and tailsurfaces) of fixed wing aircraft generally consist of spars, ribs, skin,
and stringers, methods of fabrication and assembly differ. The wing of the aircraft in Fig. 11.5 relies on
fabrication techniques that have been employed for many years. In this form of construction, the spars
comprise thin aluminium alloy webs and flanges, the latter being extruded or machined and are bolted
or riveted to the web. The ribs are formed in three parts from sheet metal by large presses and rubber
dies and have flanges round their edges so that they can be riveted to the skin and spar webs; cut outs
around their edges allow the passage of spanwise stringers. Holes are cut in the ribs at positions of low
stress for lightness and to accommodate control runs, fuel, and electrical systems.
Finally, the skin is riveted to the rib flanges and longitudinal stiffeners. Where the curvature of the

skin is large—for example, at the leading edge—the aluminium alloy sheets are passed through “rolls”
to preform them to the correct shape. A further, aerodynamic requirement is that forward chordwise
sections of the wing should be as smooth as possible to delay transition from laminar to turbulent
flow. Thus, countersunk rivets are used in these positions as opposed to dome-headed rivets nearer the
trailing edge.
The wing is attached to the fuselage through reinforced fuselage frames, frequently by bolts. In

some aircraft, the wing spars are continuous through the fuselage depending on the demands of space.
In a high wing aircraft (Fig. 11.5), deep spars passing through the fuselage would cause obstruction
problems. In this case, a short third spar provides an additional attachment point. The ideal arrangement
is obviously where continuity of the structure is maintained over the entire surface of the wing. In
most practical cases, this is impossible since cut outs in the wing surface are required for retracting
undercarriages, bomb and gun bays, inspection panels, and so forth. The last are usually located on the
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Fig. 11.9

Wing ribs for the European Airbus (courtesy of British Aerospace).

undersurface of the wing and are fastened to stiffeners and rib flanges by screws, enabling them to resist
direct and shear loads. Doors covering undercarriage wells and weapon bays are incapable of resisting
wing stresses so that provision must be made for transferring the loads from skin, flanges, and shear
webs around the cut out. This may be achieved by inserting strong bulkheads or increasing the spar
flange areas, although, no matter the method employed, increased cost, and weight result.
The different structural requirements of aircraft designed for differing operational roles lead to a

variety of wing constructions. For instance, high-speed aircraft require relatively thin wing sections,
which support highwing loadings. Towithstand the correspondingly high surface pressures and to obtain
sufficient strength, much thicker skins are necessary. Wing panels are therefore frequently machined
integrally with stringers from solid slabs of material, as are the wing ribs. Figure 11.9 shows wing
ribs for the European Airbus in which web stiffeners, flanged lightness holes, and skin attachment lugs
have been integrally machined from solid. This integral method of construction involves no new design
principles and has the advantages of combining a high grade of surface finish, free from irregularities,
with a more efficient use of material, since skin thicknesses are easily tapered to coincide with the
spanwise decrease in bending stresses.
An alternative form of construction is the sandwich panel, which comprises a light honeycomb or

corrugated metal core sandwiched between two outer skins of the stress-bearing sheet (see Fig. 11.10).
The primary function of the core is to stabilize the outer skins, although it may be stress bearing
as well. Sandwich panels are capable of developing high stresses, have smooth internal and external
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Fig. 11.10

Sandwich panels (courtesy of Ciba-Geigy Plastics).

surfaces, and require small numbers of supporting rings or frames. They also possess a high resistance
to fatigue from jet efflux. The uses of this method of construction include lightweight “planks” for
cabin furniture, monolithic fairing shells generally having plastic facing skins, and the stiffening of
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flying control surfaces. Thus, for example, the ailerons and rudder of the British Aerospace Jaguar are
fabricated from aluminium honeycomb, while fiberglass- and aluminium-faced honeycomb are used
extensively in the wings and tail surfaces of the Boeing 747. Some problems, mainly disbonding and
internal corrosion, have been encountered in service.
The general principles relating to wing construction are applicable to fuselages, with the exception

that integral construction is not used in fuselages for obvious reasons. Figures 11.5, 11.6, and 11.7
show that the same basic method of construction is employed in aircraft having widely differing roles.
Generally, the fuselage frames that support large, concentrated floor loads or loads fromwing or tailplane
attachment points are heavier than lightly loaded frames and require stiffening, with additional provision
for transmitting the concentrated load into the frame and hence the skin.
With the frames in position in the fuselage jig, stringers, passing through cutouts, are riveted to the

frame flanges. Before the skin is riveted to the frames and stringers, other subsidiary frames such as
door and window frames are riveted or bolted in position. The areas of the fuselage in the regions of
these cutouts are reinforced by additional stringers, portions of frame, and increased skin thickness, to
react to the high shear flows and direct stresses developed.
On completion, the various subassemblies are brought together for final assembly. Fuselage sections

are usually bolted together through flanges around their peripheries, while wings and the tailplane are
attached to pick up points on the relevant fuselage frames. Wing spars on low wing civil aircraft usually
pass completely through the fuselage, simplifying wing design and the method of attachment. On
smaller, military aircraft, engine installations frequently prevent this so that wing spars are attached
directly to and terminate at the fuselage frame. Clearly, at these positions frame/stringer/skin structures
require reinforcement.

11.4 CONNECTIONS
The fabrication of aircraft components, generally, involves the joining of one part of the component
to another. For example, fuselage skins are connected to stringers and frames, whereas wing skins
are connected to stringers and wing ribs unless, as in some military aircraft with high wing loadings,
the stringers are machined integrally with the wing skin (see Section 11.3). With the advent of all-
metal—aluminum alloy—construction, riveted joints became the main form of connection with some
welding, although aluminum alloys are difficult to weld, and, in themodern era, some glued joints which
use epoxy resin. In this section, we shall concentrate on the still predominant method of connection:
riveting.
In general, riveted joints are stressed in complex ways, and an accurate analysis is very often difficult

to achieve because of the discontinuities in the region of the joint. Fairly crude assumptions as to joint
behavior are made, but, when combined with experience, safe designs are produced.

11.4.1 Simple Lap Joint
Figure 11.11 shows two plates of thickness t connected together by a single line of rivets; this type of
joint is termed a lap joint and is one of the simplest used in construction.
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Fig. 11.11

Simple riveted lap joint.

Suppose that the plates carry edge loads of P/unit width that the rivets are of diameter d and are
spaced at a distance b apart and that the distance from the line of rivets to the edge of each plate is a.
There are four possible modes of failure which must be considered as follows.

Rivet Shear
The rivets may fail by shear across their diameter at the interface of the plates. Then, if the maximum
shear stress the rivets will withstand is τ1, failure will occur when

Pb= τ1

(
πd2

4

)
which gives

P = πd2τ1
4b

(11.1)

Bearing Pressure
Either the rivet or plate may fail due to bearing pressure. Suppose that pb is this pressure then failure
will occur when

Pb

td
= pb

so that

P = pbtd

b
(11.2)
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Plate Failure in Tension
The area of plate in tension along the line of rivets is reduced due to the presence of rivet holes. Therefore,
if the ultimate tensile stress in the plate is σult, failure will occur when

Pb

t(b− d) = σult

from which

P = σult t(b− d)
b

(11.3)

Shear Failure in a Plate
Shearing of the plates may occur on the planes cc resulting in the rivets being dragged out of the plate.
If the maximum shear stress at failure of the material of the plates is τ2, then a failure of this type will
occur when

Pb= 2at τ2
which gives

P = 2at τ2
b

(11.4)

Example 11.1
A joint in a fuselage skin is constructed by riveting the abutting skins between two straps as shown in
Fig. 11.12. The fuselage skins are 2.5mm thick and the straps are each 1.2mm thick; the rivets have a
diameter of 4mm. If the tensile stress in the fuselage skin must not exceed 125N/mm2 and the shear
stress in the rivets is limited to 120N/mm2, determine the maximum allowable rivet spacing such that
the joint is equally strong in shear and tension.

Fig. 11.12

Joint of Example 11.1.
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A tensile failure in the plate will occur on the reduced plate cross section along the rivet lines. This
area is given by

Ap = (b− 4) × 2.5mm2

The failure load/unit width Pf is then given by

Pfb= (b− 4) × 2.5× 125 (i)

The area of cross section of each rivet is

Ar = π × 42
4

= 12.6mm2

Since each rivet is in double shear (i.e., two failure shear planes), the area of cross section in shear is

2× 12.6= 25.2mm2

Then, the failure load/unit width in shear is given by

Pfb= 25.2× 120 (ii)

For failure to occur simultaneously in shear and tension—that is, equating Eqs. (i) and (ii)

25.2× 120= (b− 4) × 2.5× 12.5
from which

b= 13.7mm
Say, a rivet spacing of 13mm.

11.4.2 Joint Efficiency
The efficiency of a joint or connection is measured by comparing the actual failure load with that which
would apply if there were no rivet holes in the plate. Then, for the joint shown in Fig. 11.11, the joint
efficiency η is given by

η = σult t(b− d)/b
σult t

= b− d
b

(11.5)

11.4.3 Group-Riveted Joints
Rivets may be grouped on each side of a joint such that the efficiency of the joint is a maximum. Suppose
that two plates are connected as shown in Fig. 11.13 and that six rivets are required on each side. If it
is assumed that each rivet is equally loaded, then the single rivet on the line aa will take one-sixth of
the total load. The two rivets on the line bb will then share two-sixths of the load, while the three rivets
on the line cc will share three-sixths of the load. On the line bb, the area of cross section of the plate
is reduced by two rivet holes and that on the line cc by three rivet holes so that, relatively, the joint is
as strong at these sections as at aa. Therefore, a more efficient joint is obtained than if the rivets were
arranged in, say, two parallel rows of three.
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Fig. 11.13

A group-riveted joint.

11.4.4 Eccentrically Loaded Riveted Joints
The bracketed connection shown in Fig. 11.14 carries a load P offset from the centroid of the rivet
group. The rivet group is then subjected to a shear load P through its centroid and a moment or torque
Pe about its centroid.
It is assumed that the shear load P is distributed equally among the rivets, causing a shear force in

each rivet parallel to the line of action of P. The moment Pe is assumed to produce a shear force S in
each rivet, where S acts in a direction perpendicular to the line joining a particular rivet to the centroid
of the rivet group. Furthermore, the value of S is assumed to be proportional to the distance of the rivet
from the centroid of the rivet group. Then

Pe=
∑
Sr

If S=kr, where k is a constant for all rivets, then
Pe= k

∑
r2

from which k = Pe
/∑

r2

and

S = Pe∑
r2
r (11.6)

The resultant force on a rivet is then the vector sum of the forces due to P and Pe.

Example 11.2
The bracket shown in Fig. 11.15 carries an offset load of 5kN. Determine the resultant shear forces in
the rivets A and B.

The vertical shear force on each rivet is 5/6=0.83kN. The moment (Pe) on the rivet group is
5×75=375kNmm. The distance of rivet A (and B, G, and H) from the centroid C of the rivet group is



Fig. 11.14

Eccentrically loaded joint.

Fig. 11.15

Joint of Example 11.2.
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Fig. 11.16

Force diagrams for rivets of Example 11.2.

given by

r = (202+ 252)1/2 = (1025)1/2 = 32.02mm

The distance of D (and F) from C is 20mm. Therefore,∑
r2 = 2× 400+ 4× 1025= 4900

From Eq. (11.6) the shear forces on rivets A and B due to the moment are

S = 375

4900
× 32.02= 2.45kN

On rivet A, the force system due to P and Pe is shown in Fig. 11.16(a), while that on B is shown in
Fig. 11.16(b).
The resultant forces may then be calculated using the rules of vector addition or determined

graphically using the parallelogram of forces [Ref. 1].
The design of riveted connections is carried out in the actual design of the rear fuselage of a

single-engined trainer/semiaerobatic aircraft in the Appendix of the 2005 book.

11.4.5 Use of Adhesives
In addition to riveted connections, adhesives have been used and are still being used in aircraft con-
struction, although, generally, they are employed in areas of low stress since their application is still
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a matter of research. Of these adhesives, epoxy resins are the most frequently used since they have
the advantages over, say, polyester resins, of good adhesive properties, low shrinkage during cure so
that residual stresses are reduced, good mechanical properties, and thermal stability. The modulus and
ultimate strength of epoxy resin are, typically, 5000 and 100N/mm2. Epoxy resins are now found
extensively as the matrix component in fibrous composites.

Reference
[1] Megson, T.H.G., Structural and Stress Analysis, 2nd edition, Elsevier, 2005.

Problems
P.11.1 Examine possible uses of new materials in future aircraft manufacture.

P.11.2 Describe the main features of a stressed skin structure. Discuss the structural functions of the various
components with particular reference either to the fuselage or to the wing of a medium-sized transport aircraft.

P.11.3 The double-riveted butt joint shown in Fig. P.11.3 connects two plates which are each 2.5mm thick, and
the rivets have a diameter of 3mm. If the failure strength of the rivets in shear is 370N/mm2 and the ultimate
tensile strength of the plate is 465N/mm2, determine the necessary rivet pitch if the joint is to be designed so that
failure due to shear in the rivets and failure due to tension in the plate occur simultaneously. Calculate also the joint
efficiency.

Fig. P.11.3

Ans. Rivet pitch is 12mm, joint efficiency is 75 percent.

P.11.4 The rivet group shown in Fig. P.11.4 connects two narrow lengths of plate, one of which carries a 15kN load
positioned as shown. If the ultimate shear strength of a rivet is 350N/mm2 and its failure strength in compression
is 600N/mm2, determine the minimum allowable values of rivet diameter and plate thickness.



Problems 371

Fig. P.11.4

Ans. Rivet diameter is 4.0mm, plate thickness is 1.83mm.
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CHAPTER

12Airworthiness

The airworthiness of an aircraft is concerned with the standards of safety incorporated in all aspects
of its construction. These range from structural strength to the provision of certain safeguards in the
event of crash landings, and include design requirements relating to aerodynamics, performance, and
electrical and hydraulic systems. The selection of minimum standards of safety is largely the concern
of “national and international” airworthiness authorities who prepare handbooks of official require-
ments. The handbooks include operational requirements, minimum safety requirements, recommended
practices and design data, and so on.
In this chapter, we shall concentrate on the structural aspects of airworthiness which depend, chiefly,

on the strength and stiffness of the aircraft. Stiffness problems may be conveniently grouped under the
heading aeroelasticity. Strength problems arise, as we have seen, from ground and air loads, and their
magnitudes depend on the selection of maneuvering and other conditions applicable to the operational
requirements of a particular aircraft.

12.1 FACTORS OF SAFETY-FLIGHT ENVELOPE
The control of weight in aircraft design is of extreme importance. Increases in weight require stronger
structures to support them, which in turn lead to further increases in weight and so on. Excesses of
structural weight mean lesser amounts of payload, thereby affecting the economic viability of the air-
craft. The aircraft designer is therefore constantly seeking to pare his aircraft’s weight to the minimum
compatible with safety. However, to ensure general minimum standards of strength and safety, airwor-
thiness regulations lay down several factors which the primary structure of the aircraft must satisfy.
These are the limit load, which is the maximum load that the aircraft is expected to experience in
normal operation; the proof load, which is the product of the limit load and the proof factor (1.0–1.25);
and the ultimate load, which is the product of the limit load and the ultimate factor (usually 1.5). The
aircraft’s structure must withstand the proof load without detrimental distortion and should not fail
until the ultimate load has been achieved. The proof and ultimate factors may be regarded as factors of
safety and provide for various contingencies and uncertainties, which are discussed in greater detail in
Section 12.2.
The basic strength and flight performance limits for a particular aircraft are selected by the

airworthiness authorities and are contained in the flight envelope or V−n diagram shown in Fig. 12.1.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00012-9 373
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Fig. 12.1

Flight envelope.

The curves OA and OF correspond to the stalled condition of the aircraft and are obtained from the
well-known aerodynamic relationship

Lift = nW = 1
2ρV

2SCL,max

Therefore, for speeds below VA (positive wing incidence) and VF (negative incidence), the maximum
loads which can be applied to the aircraft are governed by CL,max. As the speed increases, it is pos-
sible to apply the positive and negative limit loads, corresponding to n1 and n3, without stalling the
aircraft so that AC and FE represent maximum operational load factors for the aircraft. Above the
design cruising speed VC, the cut-off lines CD1 and D2E relieve the design cases to be covered since
it is not expected that the limit loads will be applied at maximum speed. Values of n1, n2, and n3
are specified by the airworthiness authorities for particular aircraft; typical load factors are shown in
Table 12.1.
A particular flight envelope is applicable to one altitude only because CL,max is generally reduced

with an increase of altitude, and the speed of sound decreases with altitude, thereby reducing the critical
Mach number and hence the design diving speed VD. Flight envelopes are therefore drawn for a range
of altitudes from sea level to the operational ceiling of the aircraft.



12.2 Load Factor Determination 375

Table 12.1

Category

Load Factor n Normal Semiaerobatic Aerobatic

n1 2.1+ 24 000/(W+10 000) 4.5 6.0
n2 0.75n1 but n2 \<2.0 3.1 4.5
n3 1.0 1.8 3.0

12.2 LOAD FACTOR DETERMINATION
Several problems require solutions before values for the various load factors in the flight envelope
can be determined. The limit load, for example, may be produced by a specified maneuver or by an
encounter with a particularly severe gust (gust cases and the associated gust envelope are discussed in
Section 13.4. Clearly, some knowledge of possible gust conditions is required to determine the limiting
case. Furthermore, the fixing of the proof and ultimate factors also depend on the degree of uncertainty of
design, variations in structural strength, structural deterioration, and so forth. We shall now investigate
some of these problems to see their comparative influence on load factor values.

12.2.1 Limit Load
An aircraft is subjected to a variety of loads during its operational life, the main classes of which are as
follows: maneuver loads, gust loads, undercarriage loads, cabin pressure loads, buffeting, and induced
vibrations. Of these, maneuver, undercarriage, and cabin pressure loads are determined with reasonable
simplicity since maneuver loads are controlled design cases, undercarriages are designed for given
maximum descent rates, and cabin pressures are specified. The remaining loads depend to a large extent
on the atmospheric conditions encountered during flight. Therefore, estimates of the magnitudes of such
loads are only possible if in-flight data on these loads are available.
Obviously, it requires a great number of hours of flying if the experimental data are to include

possible extremes of atmospheric conditions. In practice, the amount of data required to establish the
probable period of flight time before an aircraft encounters, say, a gust load of a given severity is a great
deal more than that available. Therefore, it becomes a problem in statistics to extrapolate the available
data and calculate the probability of an aircraft being subjected to its proof or ultimate load during its
operational life. The aim would be for a zero or negligible rate of occurrence of its ultimate load and
an extremely low rate of occurrence of its proof load. Having decided on an ultimate load, then the
limit load may be fixed as defined in Section 12.1, although the value of the ultimate factor includes,
as we have already noted, allowances for uncertainties in design, variation in structural strength, and
structural deterioration.

12.2.2 Uncertainties in Design and Structural Deterioration
Neither of these presents serious problems in modern aircraft construction and therefore do not require
large factors of safety to minimize their effects. Modern methods of aircraft structural analysis are
refined, and, in any case, tests to determine actual failure loads are carried out on representative full-scale
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components to verify design estimates. The problemof structural deterioration due to corrosion andwear
may be largely eliminated by close inspection during service and the application of suitable protective
treatments.

12.2.3 Variation in Structural Strength
To minimize the effect of the variation in structural strength between two apparently identical com-
ponents, strict controls are employed in the manufacture of materials and in the fabrication of the
structure. Material control involves the observance of strict limits in chemical composition and close
supervision ofmanufacturingmethods such asmachining, heat treatment, rolling, and so on. In addition,
the inspection of samples by visual, radiographic, and other means, and the carrying out of strength
tests on specimens enable below-limit batches to be isolated and rejected. Thus, if a sample of a batch
of material falls below a specified minimum strength, then the batch is rejected. This means, of course,
that an actual structure always comprises materials with properties equal to or better than those assumed
for design purposes, an added but unallowed for “bonus” in considering factors of safety.
Similar precautions are applied to assembled structures with regard to dimension tolerances, quality

of assembly, welding, and so on. Again, visual and other inspection methods are employed and, in
certain cases, strength tests are carried out on sample structures.

12.2.4 Fatigue
Althoughadequate precautions are taken to ensure that an aircraft’s structure possesses sufficient strength
to withstand the most severe expected gust or maneuver load, there still remains the problem of fatigue.
Practically, all components of the aircraft’s structure are subjected to fluctuating loads which occur a
great many times during the life of the aircraft. It has been known for many years that materials fail
under fluctuating loads at much lower values of stress than their normal static failure stress. A graph
of failure stress against number of repetitions of this stress has the typical form shown in Fig. 12.2.

Fig. 12.2

Typical form of S−N diagram.
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For some materials, such as mild steel, the curve (usually known as an S–N curve or diagram) is asymp-
totic to a certain minimum value, which means that the material has an actual infinite-life stress. Curves
for other materials, for example, aluminium and its alloys, do not always appear to have asymptotic
values so that these materials may not possess an infinite-life stress. We shall discuss the implications
of this a little later.
Prior to themid-1940s, little attention had been paid to fatigue considerations in the design of aircraft

structures. It was felt that sufficient static strength would eliminate the possibility of fatigue failure.
However, evidence began to accumulate that several aircraft crashes had been caused by fatigue failure.
The seriousness of the situation was highlighted in the early 1950s by catastrophic fatigue failures
of two Comet airliners. These were caused by the once-per-flight cabin pressurization cycle which
produced circumferential and longitudinal stresses in the fuselage skin. Although these stresses were
well below the allowable stresses for single cycle loading, stress concentrations occurred at the corners
of the windows and around rivets which raised local stresses considerably above the general stress level.
Repeated cycles of pressurization produced fatigue cracks which propagated disastrously, causing an
explosion of the fuselage at high altitude.
Several factors contributed to the emergence of fatigue as a major factor in design. For example,

aircraft speeds and sizes increased, calling for higher wing and other loadings. Consequently, the effect
of turbulence was magnified and the magnitudes of the fluctuating loads became larger. In civil aviation,
airliners had a greater utilization and a longer operational life. The new “zinc-rich” alloys, used for their
high static strength properties, did not show a proportional improvement in fatigue strength, exhibited
high crack propagation rates and were extremely notch sensitive.
Despite the fact that the causes of fatigue were reasonably clear at that time, its elimination as a

threat to aircraft safety was a different matter. The fatigue problem has two major facets: the prediction
of the fatigue strength of a structure and a knowledge of the loads causing fatigue. Information was
lacking on both counts. The Royal Aircraft Establishment (RAE) and the aircraft industry, therefore,
embarked on an extensive test program to determine the behavior of complete components, joints, and
other detail parts under fluctuating loads. These included fatigue testing by the RAE of some 50Meteor
4 tailplanes at a range of temperatures, plus research, also by the RAE, into the fatigue behavior of joints
and connections. Further work was undertaken by some universities and by the industry itself into the
effects of stress concentrations.
In conjunction with their fatigue strength testing, the RAE initiated research to develop a suitable

instrument for counting and recording gust loads over long periods of time. Such an instrument was
developed by J. Taylor in 1950 and was designed so that the response fell off rapidly above 10Hz.
Crossings of g thresholds from 0.2 to 1.8g at 0.1g intervals were recorded (note that steady level flight
is 1g flight) during experimental flying at the RAEon three different aircraft over 28000km, and the best
techniques for extracting information from the data established. Civil airlines cooperated by carrying
the instruments on their regular air services for a number of years. Eight different types of aircraft were
equipped so that by 1961 records had been obtained for regions including Europe, the Atlantic, Africa,
India, and the Far East, representing 19000hours and 8 million km of flying.
Atmospheric turbulence and the cabin pressurization cycle are only two of the many fluctuating

loads which cause fatigue damage in aircraft. On the ground, the wing is supported on the undercarriage
and experiences tensile stresses in its upper surfaces and compressive stresses in its lower surfaces. In
flight, these stresses are reversed as aerodynamic lift supports the wing. Also, the impact of landing and
ground maneuvering on imperfect surfaces cause stress fluctuations while, during landing and take-off,
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flaps are lowered and raised, producing additional load cycles in the flap support structure. Engine
pylons are subjected to fatigue loading from thrust variations in take-off and landing and also to inertia
loads produced by lateral gusts on the complete aircraft.
A more detailed investigation of fatigue and its associated problems is presented in Chapter 14,

while a fuller discussion of airworthiness as applied to civil jet aircraft is presented in Jenkinson et al.
[Ref. 1].

Reference
[1] Jenkinson, L.R., Simpkin, P., and Rhodes, D., Civil Jet Aircraft Design, Arnold, 1999.
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13Airframe Loads

In Chapter 11, we discussed in general terms the types of load to which aircraft are subjected during
their operational life. We shall now examine in more detail the loads which are produced by various
maneuvers and the manner in which they are calculated.

13.1 AIRCRAFT INERTIA LOADS
The maximum loads on the components of an aircraft’s structure generally occur when the aircraft is
undergoing some form of acceleration or deceleration, such as in landings, take-offs, and maneuvers
within the flight and gust envelopes. Thus, before a structural component can be designed, the inertia
loads corresponding to these accelerations and decelerations must be calculated. For these purposes, we
shall suppose that an aircraft is a rigid body and represent it by a rigid mass, m, as shown in Fig. 13.1.
We shall also, at this stage, consider motion in the plane of the mass which would correspond to pitching
of the aircraft without roll or yaw. We shall also suppose that the center of gravity (CG) of the mass has
coordinates x̄, ȳ referred to x and y axes having an arbitrary origin O; the mass is rotating about an axis
through O perpendicular to the xy plane with a constant angular velocity ω.
The acceleration of any point, a distance r from O, is ω2r and is directed toward O. Thus, the

inertia force acting on the element, δm, is ω2rδm in a direction opposite to the acceleration, as shown
in Fig. 13.1. The components of this inertia force, parallel to the x and y axes, are ω2rδmcosθ and
ω2rδm sinθ , respectively, or, in terms of x and y, ω2xδm and ω2yδm. The resultant inertia forces, Fx
and Fy, are then given by

Fx =
∫

ω2xdm= ω2
∫
xdm

Fy =
∫

ω2ydm= ω2
∫
ydm

in which we note that the angular velocity ω is constant and may therefore be taken outside the integral
sign. In the above expressions,

∫
xdm and

∫
ydm are the moments of the mass, m, about the y and x

axes, respectively, so that

Fx = ω2x̄m (13.1)

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
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Fig. 13.1

Inertia forces on a rigid mass having a constant angular velocity.

Fig. 13.2

Inertia forces on a rigid mass subjected to an angular acceleration.

and

Fy = ω2ȳm (13.2)

If the CG lies on the x axis, ȳ=0 and Fy=0. Similarly, if the CG lies on the y axis, Fx=0. Clearly, if
O coincides with the CG, x̄= ȳ=0 and Fx=Fy=0.
Suppose now that the rigid body is subjected to an angular acceleration (or deceleration) α in addition

to the constant angular velocity, ω, as shown in Fig. 13.2. An additional inertia force, αrδm, acts on the
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element δm in a direction perpendicular to r and in the opposite sense to the angular acceleration. This
inertia force has components αrδmcosθ and αrδm sinθ , i.e. αxδm and αyδm, in the y and x directions,
respectively. Thus, the resultant inertia forces, Fx and Fy, are given by

Fx =
∫

αydm= α

∫
ydm

and

Fy = −
∫

αxdm= −α

∫
xdm

for α in the direction shown. Then, as before

Fx = αȳm (13.3)

and

Fy = αx̄m (13.4)

Also, if the CG lies on the x axis, ȳ=0 and Fx=0. Similarly, if the CG lies on the y axis, x̄=0 and
Fy=0.
The torque about the axis of rotation produced by the inertia force corresponding to the angular

acceleration on the element δm is given by

δTO = αr2δm

Thus, for the complete mass

TO =
∫

αr2 dm= α

∫
r2 dm

The integral term in this expression is the moment of inertia, IO, of the mass about the axis of rotation.
Thus,

TO = αIO (13.5)

Equation (13.5) may be rewritten in terms of ICG, the moment of inertia of the mass about an axis
perpendicular to the plane of the mass through the CG. Hence, using the parallel axes theorem

IO = m(r̄)2+ ICG
where r̄ is the distance between O and the CG. Then

IO = m[(x̄)2+ (ȳ)2]+ ICG
and

TO = m[(x̄)2+ (ȳ)2]α + ICGα (13.6)
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Example 13.1
An aircraft having a total weight of 45kN lands on the deck of an aircraft carrier and is brought to rest
by means of a cable engaged by an arrester hook, as shown in Fig. 13.3. If the deceleration induced
by the cable is 3g, determine the tension, T , in the cable, the load on an undercarriage strut, and the
shear and axial loads in the fuselage at the section AA; the weight of the aircraft aft of AA is 4.5kN.
Calculate also the length of deck covered by the aircraft before it is brought to rest if the touch-down
speed is 25m/s.

The aircraft is subjected to a horizontal inertia force ma, where m is the mass of the aircraft and a
its deceleration. Thus, resolving forces horizontally

T cos10◦ −ma= 0

that is,

T cos10◦ − 45

g
3g= 0

which gives

T = 137.1kN

Now, resolving forces vertically

R−W − T sin10◦ = 0

that is,

R= 45+ 131.1sin10◦ = 68.8kN

Assuming two undercarriage struts, the load in each strut will be (R/2)/cos 20◦ =36.6kN.

Fig. 13.3

Forces on the aircraft of Example 13.1.
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Let N and S be the axial and shear loads at the section AA, as shown in Fig. 13.4. The inertia load
acting at the CG of the fuselage aft of AA is m1a, wherem1 is the mass of the fuselage aft of AA. Then,

m1a= 4.5

g
3g= 13.5kN

Resolving forces parallel to the axis of the fuselage

N − T +m1acos10◦ − 4.5sin10◦ = 0
that is,

N − 137.1+ 13.5cos10◦ − 4.5sin10◦ = 0
from which

N = 124.6kN
Now resolving forces perpendicular to the axis of the fuselage

S−m1a sin10◦ − 4.5cos10◦ = 0
that is,

S− 13.5sin10◦ − 4.5cos10◦ = 0
so that

S = 6.8kN
Note that, in addition to the axial load and shear load at the section AA, there will also be a bending
moment.
Finally, from elementary dynamics

v2 = v20 + 2as

Fig. 13.4

Shear and axial loads at the section AA of the aircraft of Example 13.1.
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where v0 is the touchdown speed, v is the final speed (= 0), and s is the length of deck covered. Then,
v20 = −2as

that is,

252 = −2(−3× 9.81)s
which gives

s= 10.6m

Example 13.2
An aircraft having a weight of 250kN and a tricycle undercarriage lands at a vertical velocity of 3.7m/s,
such that the vertical and horizontal reactions on the main wheels are 1200kN and 400kN, respectively;
at this instant, the nose wheel is 1.0m from the ground, as shown in Fig. 13.5. If the moment of inertia
of the aircraft about its CG is 5.65×108 Ns2 mm, determine the inertia forces on the aircraft, the time
taken for its vertical velocity to become zero, and its angular velocity at this instant.

The horizontal and vertical inertia forces max and may act at the CG, as shown in Fig. 13.5, m is the
mass of the aircraft and ax and ay its accelerations in the horizontal and vertical directions, respectively.
Then, resolving forces horizontally

max − 400= 0
from which

max = 400kN
Now resolving forces vertically

may+ 250− 1200= 0

Fig. 13.5

Geometry of the aircraft of Example 13.2.
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which gives

may = 950kN
Then

ay = 950

m
= 950

250/g
= 3.8g (i)

Now taking moments about the CG

ICGα − 1200× 1.0− 400× 2.5= 0 (ii)

from which

ICGα = 2200mkN
Hence,

α = ICGα

ICG
= 2200× 106
5.65× 108 = 3.9rad/s2 (iii)

From Eq. (i), the aircraft has a vertical deceleration of 3.8g from an initial vertical velocity of
3.7m/s. Therefore, from elementary dynamics, the time, t, taken for the vertical velocity to become
zero is given by

v= v0+ ayt (iv)

in which v=0 and v0=3.7m/s. Hence,
0= 3.7− 3.8× 9.81t

from which

t = 0.099s
In a similar manner to Eq. (iv), the angular velocity of the aircraft after 0.099s is given by

ω = ω0+ αt

in which ω0=0 and α=3.9 rad/s2. Hence,

ω = 3.9× 0.099
that is,

ω = 0.39rad/s
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13.2 SYMMETRIC MANEUVER LOADS
We shall now consider the calculation of aircraft loads corresponding to the flight conditions specified
by flight envelopes. There are, in fact, an infinite number of flight conditions within the boundary
of the flight envelope although, structurally, those represented by the boundary are the most severe.
Furthermore, it is usually found that the corners A, C, D1, D2, E, and F (see Fig. 12.1) are more
critical than points on the boundary between the corners so that, in practice, only the six conditions
corresponding to these corner points need to be investigated for each flight envelope.
In symmetric maneuvers, we consider the motion of the aircraft initiated by movement of the control

surfaces in the plane of symmetry. Examples of such maneuvers are loops, straight pull-outs, and bunts,
and the calculations involve the determination of lift, drag, and tailplane loads at given flight speeds
and altitudes. The effects of atmospheric turbulence and gusts are discussed in Section 13.4.

13.2.1 Level Flight
Although steady level flight is not a maneuver in the strict sense of the word, it is a useful condition to
investigate initially since it establishes points of load application and gives some idea of the equilibrium
of an aircraft in the longitudinal plane. The loads acting on an aircraft in steady flight are shown in
Fig. 13.6, with the following notation:

L is the lift acting at the aerodynamic center of the wing.
D is the aircraft drag.
M0 is the aerodynamic pitching moment of the aircraft less its horizontal tail.
P is the horizontal tail load acting at the aerodynamic center of the tail, usually taken to be at
approximately one-third of the tailplane chord.

W is the aircraft weight acting at its CG.
T is the engine thrust, assumed here to act parallel to the direction of flight in order to simplify
calculation.

Fig. 13.6

Aircraft loads in level flight.
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The loads are in static equilibrium since the aircraft is in a steady, unaccelerated, level flight condition.
Thus, for vertical equilibrium

L+P−W = 0 (13.7)

for horizontal equilibrium

T −D= 0 (13.8)

and taking moments about the aircraft’s CG in the plane of symmetry

La−Db− Tc−M0−Pl = 0 (13.9)

For a given aircraft weight, speed, and altitude, Eqs. (13.7, 13.8, and 13.9) may be solved for the
unknown lift, drag, and tail loads. However, other parameters in these equations, such as M0, depend
upon the wing incidence α, which in turn is a function of the required wing lift so that, in practice, a
method of successive approximation is found to be the most convenient means of solution.
As a first approximation, we assume that the tail load P is small compared with the wing lift L so

that, from Eq. (13.7), L≈W . From aerodynamic theory with the usual notation,

L = 1

2
ρV2SCL

Hence,

1

2
ρV2SCL ≈W (13.10)

Equation (13.10) gives the approximate lift coefficient CL and thus (from CL−α curves established by
wind tunnel tests) the wing incidence α. The drag load D follows (knowing V and α) and hence we
obtain the required engine thrust T from Eq. (13.8). Also, M0, a, b, c, and l may be calculated (again,
since V and α are known) and Eq. (13.9) solved for P. As a second approximation, this value of P is
substituted in Eq. (13.7) to obtain a more accurate value for L, and the procedure is repeated. Usually
three approximations are sufficient to produce reasonably accurate values.
In most cases, P, D, and T are small compared with the lift and aircraft weight. Therefore, from

Eq. (13.7) L≈W , and substitution in Eq. (13.9) gives, neglecting D and T

P ≈W a
l

− M0
l

(13.11)

We see from Eq. (13.11) that if a is large, then P will most likely be positive. In other words, the tail
load acts upward when the CG of the aircraft is far aft. When a is small or negative—in other words, a
forward CG—then P will probably be negative and act downward.

13.2.2 General Case of a Symmetric Maneuver
In a rapid pull-out from a dive a downward load is applied to the tailplane, causing the aircraft to pitch
nose upward. The downward load is achieved by a backward movement of the control column, thereby
applying negative incidence to the elevators, or horizontal tail if the latter is all-moving. If the maneuver
is carried out rapidly, the forward speed of the aircraft remains practically constant so that increases
in lift and drag result from the increase in wing incidence only. Since the lift is now greater than that
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required to balance the aircraft weight, the aircraft experiences an upward acceleration normal to its
flight path. This normal acceleration combined with the aircraft’s speed in the dive results in the curved
flight path shown in Fig. 13.7. As the drag load builds up with an increase of incidence, the forward
speed of the aircraft falls since the thrust is assumed to remain constant during the maneuver. It is usual,
as we observed in the discussion of the flight envelope, to describe the maneuvers of an aircraft in
terms of a maneuvering load factor n. For steady level flight n=1, giving 1g flight, although in fact
the acceleration is zero. What is implied in this method of description is that the inertia force on the
aircraft in the level flight condition is 1.0 times its weight. It follows that the vertical inertia force on an
aircraft carrying out an ng maneuver is nW. We may, therefore, replace the dynamic conditions of the
accelerated motion by an equivalent set of static conditions in which the applied loads are in equilibrium
with the inertia forces. Thus, in Fig. 13.7, n is the maneuver load factor, while f is a similar factor giving
the horizontal inertia force. Note that the actual normal acceleration in this particular case is (n−1)g.
For vertical equilibrium of the aircraft, we have, referring to Fig. 13.7 where the aircraft is shown

at the lowest point of the pull-out

L+P+ T sinγ − nW = 0 (13.12)

For horizontal equilibrium,

T cosγ + f W −D= 0 (13.13)

and for pitching moment equilibrium about the aircraft’s CG,

La−Db− Tc−M0−Pl = 0 (13.14)

Equation (13.14) contains no terms representing the effect of pitching acceleration of the aircraft; this
is assumed to be negligible at this stage.
Again, the method of successive approximation is found to be most convenient for the solution of

Eqs. (13.12, 13.13, and 13.14). There is, however, a difference to the procedure described for the steady

Fig. 13.7

Aircraft loads in a pull-out from a dive.
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level flight case. The engine thrust T is no longer directly related to the drag D, as the latter changes
during the maneuver. Generally, the thrust is regarded as remaining constant and equal to the value
appropriate to conditions before the maneuver began.

Example 13.3
The curvesCD,α, andCM,CG for a light aircraft are shown in Fig. 13.8(a). The aircraft weight is 8000N,
its wing area 14.5m2, and its mean chord 1.35m. Determine the lift, drag, tail load, and forward inertia
force for a symmetric maneuver corresponding to n=4.5 and a speed of 60m/s. Assume that engine-
off conditions apply and that the air density is 1.223kg/m3. Figure 13.8(b) shows the relevant aircraft
dimensions.

Fig. 13.8

(a) CD, α, CM,CG −CL curves for Example 13.3; (b) geometry of Example 13.3.
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As a first approximation, we neglect the tail load P. Therefore, from Eq. (13.12), since T=0, we
have

L ≈ nW (i)

Hence

CL = L
1
2ρV

2S
≈ 4.5× 8000

1
2 × 1.223× 602× 14.5 = 1.113

From Fig. 13.8(a), α=13.75◦ and CM,CG=0.075. The tail arm l, from Fig. 13.8(b), is
l = 4.18cos(α − 2) + 0.31sin(α − 2) (ii)

Substituting the above value of α gives l=4.123m. In Eq. (13.14) the terms La−Db−M0 are equivalent
to the aircraft pitching moment MCG about its CG. Equation (13.14) may therefore be written

MCG−Pl = 0
or

Pl = 1

2
ρV2ScCM,CG (iii)

where c=wing mean chord. Substituting P from Eq. (iii) into Eq. (13.12) we have

L+
1
2ρV

2ScCM,CG
l

= nW
or dividing through by 12ρV

2S

CL+ c

l
CM,CG = nW

1
2ρV

2S
(iv)

We now obtain a more accurate value for CL from Eq. (iv)

CL = 1.113− 1.35

4.123
× 0.075= 1.088

giving α=13.3◦ and CM,CG=0.073. Substituting this value of α into Eq. (ii) gives a second approxi-
mation for l, namely l=4.161m.
Equation (iv) now gives a third approximation for CL: CL=1.099. Since the three calculated values

of CL are all extremely close, further approximations will not give values of CL very much different
from those above. Therefore, we shall take CL=1.099. From Fig. 13.8(a), CD=0.0875.
The values of lift, tail load, drag, and forward inertia force then follow:

Lift L = 1

2
ρV2SCL = 1

2
× 1.223× 602× 14.5× 1.099= 35000N

Tail load P = nW − L = 4.5× 8000− 35000= 1000N

Drag D= 1

2
ρV2SCD = 1

2
× 1.223× 602× 14.5× 0.0875= 2790N

Forward inertia force f W = D (From Eq. (13.13))= 2790N
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13.3 NORMAL ACCELERATIONS ASSOCIATED WITH VARIOUS
TYPES OF MANEUVER

In Section 13.2, we determined aircraft loads corresponding to a given maneuver load factor n. Clearly,
it is necessary to relate this load factor to given types of maneuver. Two cases arise: the first, involving
a steady pull-out from a dive and the second, a correctly banked turn. Although the latter is not a
symmetric maneuver in the strict sense of the word, it gives rise to normal accelerations in the plane of
symmetry and is therefore included.

13.3.1 Steady Pull-Out
Let us suppose that the aircraft has just begun its pull-out from a dive so that it is describing a curved
flight path but is not yet at its lowest point. The loads acting on the aircraft at this stage of the maneuver
are shown in Fig. 13.9, where R is the radius of curvature of the flight path. In this case, the lift vector
must equilibrate the normal (to the flight path) component of the aircraft weight and provide the force
producing the centripetal acceleration V2/R of the aircraft toward the center of curvature of the flight
path. Thus,

L = WV2

gR
+W cosθ

Fig. 13.9

Aircraft loads and acceleration during a steady pull-out.
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or, since L=nW (see Section 13.2)

n= V2

gR
+ cosθ (13.15)

At the lowest point of the pull-out, θ =0, and

n= V2

gR
+ 1 (13.16)

We see from either Eq. (13.15) or Eq. (13.16) that the smaller the radius of the flight path, that is the
more severe the pull-out, the greater the value of n. It is quite possible, therefore, for a severe pull-out
to overstress the aircraft by subjecting it to loads which lie outside the flight envelope and which may
even exceed the proof or ultimate loads. In practice, the control surface movement may be limited by
stops incorporated in the control circuit. These stops usually operate only above a certain speed, giving
the aircraft adequate maneuverability at lower speeds. For hydraulically operated controls, “artificial
feel” is built in to the system whereby the stick force increases progressively as the speed increases—a
necessary precaution in this type of system since the pilot is merely opening and closing valves in the
control circuit and therefore receives no direct physical indication of control surface forces.
Alternatively, at low speeds, a severe pull-out or pull-up may stall the aircraft. Again safety pre-

cautions are usually incorporated in the form of stall warning devices, since, for modern high-speed
aircraft, a stall can be disastrous, particularly at low altitudes.

13.3.2 Correctly Banked Turn
In this maneuver, the aircraft flies in a horizontal turn with no sideslip at constant speed. If the radius of
the turn is R and the angle of bank φ, then the forces acting on the aircraft are those shown in Fig. 13.10.
The horizontal component of the lift vector in this case provides the force necessary to produce the
centripetal acceleration of the aircraft toward the center of the turn. Then

L sinφ = WV2

gR
(13.17)

Fig. 13.10

Correctly banked turn.
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and for vertical equilibrium

L cosφ =W (13.18)

or

L =W secφ (13.19)

From Eq. (13.19), we see that the load factor n in the turn is given by

n= secφ (13.20)

Also, dividing Eq. (13.17) by Eq. (13.18)

tanφ = V2

gR
(13.21)

Examination of Eq. (13.21) reveals that the tighter the turn the greater the angle of bank required to
maintain horizontal flight. Furthermore, we see from Eq. (13.20) that an increase in bank angle results
in an increased load factor. Aerodynamic theory shows that for a limiting value of n, the minimum time
taken to turn through a given angle at a given value of engine thrust occurs when the lift coefficient CL
is a maximum—that is, with the aircraft on the point of stalling.

13.4 GUST LOADS
In Section 13.2, we considered aircraft loads resulting from prescribed maneuvers in the longitudinal
plane of symmetry. Other types of in-flight load are caused by air turbulence. The movements of the air
in turbulence are generally known as gusts and produce changes in wing incidence, thereby subjecting
the aircraft to sudden or gradual increases or decreases in lift from which normal accelerations result.
These may be critical for large, high-speed aircraft and may possibly cause higher loads than control
initiated maneuvers.
At the present time, two approaches are employed in gust analysis. One method, which has been in

use for a considerable number of years, determines the aircraft response and loads due to a single or
“discrete” gust of a given profile. This profile is defined as a distribution of vertical gust velocity over
a given finite length or given period of time. Examples of these profiles are shown in Fig. 13.11.
Early airworthiness requirements specified an instantaneous application of gust velocity u, resulting

in the “sharp-edged” gust of Fig. 13.11(a). Calculations of normal acceleration and aircraft response
were based on the assumptions that the aircraft’s flight is undisturbed while the aircraft passes from
still air into the moving air of the gust and during the time taken for the gust loads to build up; that
the aerodynamic forces on the aircraft are determined by the instantaneous incidence of the particular
lifting surface; and finally that the aircraft’s structure is rigid. The second assumption here relating
the aerodynamic force on a lifting surface to its instantaneous incidence neglects the fact that in a
disturbance such as a gust there is a gradual growth of circulation and hence of lift to a steady state
value (Wagner effect). This, in general, leads to an overestimation of the upward acceleration of an
aircraft and therefore of gust loads.
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Fig. 13.11

(a) Sharp-edged gust; (b) graded gust; (c) 1−cosine gust.

The “sharp-edged” gust was replaced when it was realized that the gust velocity built up to a
maximum over a period of time. Airworthiness requirements were modified on the assumption that the
gust velocity increased linearly to a maximum value over a specified gust gradient distance H. Hence,
the “graded” gust of Fig. 13.11(b). In the United Kingdom H is taken as 30.5 m. Since, as far as the
aircraft is concerned, the gust velocity builds up to a maximum over a period of time, it is no longer
allowable to ignore the change of flight path as the aircraft enters the gust. By the time the gust has
attained its maximum value, the aircraft has developed a vertical component of velocity and, in addition,
may be pitching, depending on its longitudinal stability characteristics. The effect of the former is to
reduce the severity of the gust, whereas the latter may either increase or decrease the loads involved.
To evaluate the corresponding gust loads, the designer may either calculate the complete motion of
the aircraft during the disturbance and hence obtain the gust loads or replace the “graded” gust by an
equivalent “sharp-edged” gust, producing approximately the same effect. We shall discuss the latter
procedure in greater detail later.
The calculation of the complete response of the aircraft to a “graded” gust may be obtained from

its response to a “sharp-edged” or “step” gust, by treating the former as comprising a large number of
small “steps” and superimposing the responses to each of these. Such a process is known as convolution
or Duhamel integration. This treatment is desirable for large or unorthodox aircraft where aeroelastic
(structural flexibility) effects on gust loadsmaybe appreciable or unknown. In such cases, the assumption
of a rigid aircraft may lead to an underestimation of gust loads. The equations of motion are therefore
modified to allow for aeroelastic in addition to aerodynamic effects. For small andmedium-sized aircraft
having orthodox aerodynamic features, the equivalent “sharp-edged” gust procedure is satisfactory.
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Although the “graded” or “ramp” gust is used as a basis for gust load calculations, other shapes
of gust profile are in current use. Typical of these is the “l−cosine” gust of Fig. 13.11(c), where the
gust velocity u is given by u(t)=(U/2)[l− cos(π t/T)]. Again, the aircraft response is determined by
superimposing the responses to each of a large number of small steps.
Although the “discrete” gust approach still finds widespread use in the calculation of gust loads,

alternative methods based on power spectral analysis are being investigated. The advantage of the
power spectral technique lies in its freedom from arbitrary assumptions of gust shapes and sizes. It is
assumed that gust velocity is a random variable which may be regarded for analysis as consisting of a
large number of sinusoidal components whose amplitudes vary with frequency. The power spectrum of
such a function is then defined as the distribution of energy over the frequency range. This may then be
related to gust velocity. Establishing appropriate amplitude and frequency distributions for a particular
random gust profile requires a large amount of experimental data. The collection of such data has been
previously referred to in Section 12.2.
Calculations of the complete response of an aircraft and detailed assessments of the “discrete” gust

and power spectral methods of analysis are outside the scope of this book. More information may be
found in Refs. [1–4] at the end of the chapter. Our present analysis is confined to the “discrete” gust
approach, in which we consider the “sharp-edged” gust and the equivalent “sharp-edged” gust derived
from the “graded” gust.

13.4.1 “Sharp-Edged” Gust
The simplifying assumptions introduced in the determination of gust loads resulting from the “sharp-
edged” gust have been discussed in the earlier part of this section. In Fig. 13.12, the aircraft is flying at
a speed V with wing incidence α0 in still air. After entering the gust of upward velocity u, the incidence
increases by an amount tan−1 u/V , or since u is usually small comparedwithV , u/V . This is accompanied
by an increase in aircraft speed from V to (V2+u2)12 , but again this increase is neglected since u is

Fig. 13.12

Increase in wing incidence due to a sharp-edged gust.
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small. The increase in wing lift �L is then given by

�L = 1

2
ρV2S

∂CL
∂α

u

V
= 1

2
ρVS

∂CL
∂α

u (13.22)

where ∂CL/∂α is the wing lift–curve slope. Neglecting the change of lift on the tailplane as a first
approximation, the gust load factor �n produced by this change of lift is

�n=
1
2ρVS(∂CL/∂α)u

W
(13.23)

whereW is the aircraft weight. Expressing Eq. (13.23) in terms of the wing loading, w=W /S, we have

�n=
1
2ρV(∂CL/∂α)u

w
(13.24)

This increment in gust load factor is additional to the steady level flight value n=1. Therefore, as a
result of the gust, the total gust load factor is

n= 1+
1
2ρV(∂CL/∂α)u

w
(13.25)

Similarly, for a downgust

n= 1−
1
2ρV(∂CL/∂α)u

w
(13.26)

If flight conditions are expressed in terms of equivalent sea-level conditions, then V becomes the
equivalent airspeed (EAS), VE, u becomes uE and the air density ρ is replaced by the sea-level value
ρ0. Equations (13.25) and (13.26) are written

n= 1+
1
2ρ0VE(∂CL/∂α)uE

w
(13.27)

and

n= 1−
1
2ρ0VE(∂CL/∂α)uE

w
(13.28)

We observe from Eqs. (13.25) through (13.28) that the gust load factor is directly proportional to aircraft
speed but inversely proportional to wing loading. It follows that high speed aircraft with low ormoderate
wing loadings are most likely to be affected by gust loads.
The contribution to normal acceleration of the change in tail load produced by the gust may be

calculated using the same assumptions as before. However, the change in tailplane incidence is not
equal to the change in wing incidence due to downwash effects at the tail. Thus, if �P is the increase
(or decrease) in tailplane load, then

�P = 1

2
ρ0V

2
EST�CL,T (13.29)
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where ST is the tailplane area and �CL,T the increment of tailplane lift coefficient given by

�CL,T = ∂CL,T
∂α

uE
VE

(13.30)

in which ∂CL,T/∂α is the rate of change of tailplane lift coefficient with wing incidence. From
aerodynamic theory,

∂CL,T
∂α

= ∂CL,T
∂αT

(
1− ∂ε

∂α

)

where ∂CL,T/∂αT is the rate of change of CL,T with tailplane incidence and ∂ε/∂α is the rate of change
of downwash angle with wing incidence. Substituting for �CL,T from Eq. (13.30) into Eq. (13.29), we
have

�P = 1

2
ρ0VEST

∂CL,T
∂α

uE (13.31)

For positive increments of wing lift and tailplane load

�nW = �L+ �P

or, from Eqs. (13.27) and (13.31)

�n=
1
2ρ0VE(∂CL/∂α)uE

w

(
1+ ST

S

∂CL,T/∂α

∂CL/∂α

)
(13.32)

13.4.2 The “Graded” Gust
The “graded” gust of Fig. 13.11(b)may be converted to an equivalent “sharp-edged” gust bymultiplying
the maximum velocity in the gust by a gust alleviation factor, F. Equation (13.27) then becomes

n= 1+
1
2ρ0VE(∂CL/∂α)FuE

w
(13.33)

Similar modifications are carried out on Eqs. (13.25), (13.26), (13.28), and (13.32). The gust alleviation
factor allows for some of the dynamic properties of the aircraft, including unsteady lift, and has been
calculated taking into account the heaving motion (i.e., the up and down motion with zero rate of pitch)
of the aircraft only [Ref. 5].
Horizontal gusts cause lateral loads on the vertical tail or fin. Their magnitudes may be calculated

in an identical manner to those above, except that areas and values of lift curve slope are referred to
the vertical tail. Also, the gust alleviation factor in the “graded” gust case becomes F1 and includes
allowances for the aerodynamic yawing moment produced by the gust and the yawing inertia of the
aircraft.
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13.4.3 Gust Envelope
Airworthiness requirements usually specify that gust loads shall be calculated at certain combinations of
gust and flight speed. The equations for gust load factor in the above analysis show that n is proportional
to aircraft speed for a given gust velocity. Therefore, we may plot a gust envelope similar to the flight
envelope of Fig. 12.1, as shown in Fig. 13.13. The gust speeds ±U1,±U2, and±U3 are high, medium,
and low velocity gusts, respectively. Cutoffs occur at points where the lines corresponding to each gust
velocity meet specific aircraft speeds. For example, A and F denote speeds at which a gust of velocity
±U1 would stall the wing.
The lift coefficient–incidence curve is, as we noted in connection with the flight envelope, affected

by compressibility and therefore altitude so that a series of gust envelopes should be drawn for different
altitudes. An additional variable in the equations for gust load factor is the wing loading w. Further,
gust envelopes should therefore be drawn to represent different conditions of aircraft loading.
Typical values of U1, U2, and U3 are 20m/s, 15.25m/s, and 7.5m/s. It can be seen from the gust

envelope that the maximum gust load factor occurs at the cruising speed VC. If this value of n exceeds
that for the corresponding flight envelope case—that is, n1—then the gust case will be the most critical
in the cruise. Let us consider a civil, nonaerobatic aircraft for which n1=2.5, w=2400N/m2, and
∂CL/∂α=5.0/rad. Taking F=0.715 we have, from Eq. (13.33)

n= 1+
1
2 × 1.223VC× 5.0× 0.715× 15.25

2400

giving n=1+0.0139VC, where the cruising speed VC is expressed as an EAS. For the gust case to be
critical

1+ 0.0139VC > 2.5

Fig. 13.13

Typical gust envelope.
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or

VC > 108m/s

Thus, for civil aircraft of this type having cruising speeds in excess of 108m/s, the gust case is the most
critical. This would, in fact, apply to most modern civil airliners.
Although, the same combination of V and n in the flight and gust envelopes will produce the same

total lift on an aircraft, the individual wing and tailplane loads will be different, as shown previously
(see the derivation of Eq. (13.33)). This situation can be important for aircraft such as the Airbus, which
has a large tailplane and a CG forward of the aerodynamic center. In the flight envelope case, the tail
load is downward, whereas in the gust case it is upward; clearly there will be a significant difference in
wing load.
The transference of maneuver and gust loads into bending, shear and torsional loads on wings,

fuselage, and tailplanes has been discussed in Section 11.1. Further loads arise from aileron applica-
tion, in undercarriages during landing, on engine mountings, and during crash landings. Analysis and
discussion of these may be found in Ref. [6].
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Problems
P.13.1 The aircraft shown in Fig. P.13.1(a) weighs 135kN and has landed such that at the instant of impact the
ground reaction on each main undercarriage wheel is 200kN and its vertical velocity is 3.5m/s.

Fig. P.13.1
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If each undercarriage wheel weighs 2.25kN and is attached to an oleo strut, as shown in Fig. P.13.1(b), calculate
the axial load and bendingmoment in the strut; the strutmay be assumed to be vertical. Determine also the shortening
of the strut when the vertical velocity of the aircraft is zero.

Finally, calculate the shear force and bending moment in the wing at the section AA if the wing, outboard of
this section, weighs 6.6kN and has its CG 3.05m from AA.

Ans. 193.3kN, 29.0kNm (clockwise); 0.32m; 19.5kN, 59.6kNm (anticlockwise).

P.13.2 Determine, for the aircraft of Example 13.2, the vertical velocity of the nose wheel when it hits the ground.

Ans. 3.1m/s.

P.13.3 Figure P.13.3 shows the flight envelope at sea-level for an aircraft of wing span 27.5m, average wing chord
3.05m, and total weight 196000N. The aerodynamic center is 0.915m forward of the CG and the center of lift for
the tail unit is 16.7m aft of the CG. The pitching moment coefficient is

CM,0 = −0.0638 (nose-up positive)

both CM,0 and the position of the aerodynamic center are specified for the complete aircraft less tail unit.

Fig. P.13.3

For steady cruising flight at sea-level the fuselage bending moment at the CG is 600000Nm. Calculate the
maximum value of this bending moment for the given flight envelope. For this purpose, it may be assumed that the
aerodynamic loadings on the fuselage itself can be neglected—that is, the only loads on the fuselage structure aft
of the CG are those due to the tail lift and the inertia of the fuselage.

Ans. 1549500 Nm at n=3.5, V=152.5m/s.
P.13.4 An aircraft weighing 238000N has wings 88.5m2 in area for which CD=0.0075+0.045C2L The extra-to-
wing drag coefficient based on wing area is 0.0128 and the pitching moment coefficient for all parts excluding the
tailplane about an axis through the CG is given by CM ·c=(0.427CL−0.061)m. The radius from the CG to the
line of action of the tail lift may be taken as constant at 12.2m. The moment of inertia of the aircraft for pitching
is 204000kgm2.

During a pull-out from a dive with zero thrust at 215m/s EASwhen the flight path is at 40◦ to the horizontal with
a radius of curvature of 1525m, the angular velocity of pitch is checked by applying a retardation of 0.25 rad/s2.
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Calculate the maneuver load factor both at the CG and at the tailplane CP, the forward inertia coefficient, and the
tail lift.

Ans. n=3.78(CG), n=5.19 at TP, f =−0.370, P=18 925N.
P.13.5 An aircraft flies at sea level in a correctly banked turn of radius 610m at a speed of 168m/s. Figure P.13.5
shows the relative positions of the CG, aerodynamic center of the complete aircraft less tailplane and the tailplane
center of pressure for the aircraft at zero lift incidence.

Fig. P.13.5

Calculate the tail load necessary for equilibrium in the turn. The necessary data are given in the usual notation
as follows:

Weight W=133500N dCL/dα=4.5/rad
Wing area S=46.5m2 CD=0.01+ 0.05C2L

Wing mean chord c̄=3.0m CM,0=−0.03
Ans. 73,160N.

P.13.6 The aircraft for which the stalling speed Vs in level flight is 46.5m/s has a maximum allowable maneuver
load factor n1 of 4.0. In assessing gyroscopic effects on the engine mounting, the following two cases are to be
considered:

(a) Pull-out at maximum permissible rate from a dive in symmetric flight, the angle of the flight path to the
horizontal being limited to 60◦ for this aircraft.

(b) Steady, correctly banked turn at the maximum permissible rate in horizontal flight.

Find the corresponding maximum angular velocities in yaw and pitch.

Ans. (a) Pitch, 0.37 rad/s, (b) Pitch, 0.41 rad/s, Yaw, 0.103 rad/s.

P.13.7 A tail-first supersonic airliner, whose essential geometry is shown in Fig. P.13.7, flies at 610m/s true
airspeed at an altitude of 18300m. Assuming that thrust and drag forces act in the same straight line, calculate the
tail lift in steady straight and level flight.

If, at the same altitude, the aircraft encounters a sharp-edged vertical up-gust of 18m/s true airspeed, calculate
the changes in the lift and tail load and also the resultant load factor n.

The relevant data in the usual notation are as follows:

Wing: S=280m2, ∂CL/∂α = 1.5
Tail: ST=28m2, ∂CL,T/∂α = 2.0

Weight W=1600000N
CM,0=−0.01

Mean chord c̄=22.8m
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Fig. P.13.7

At 18 300m

ρ = 0.116kg/m3

Ans. P=267852N, �P=36257N, �L=271931N, n=1.19.
P.13.8 An aircraft of all up weight 145000N has wings of area 50m2 and mean chord 2.5m. For the whole aircraft
CD=0.021+0.041C2L, for the wings dCL/dα=4.8, for the tailplane of area 9.0m2, dCL,T/dα=2.2 allowing for
the effects of downwash, and the pitching moment coefficient about the aerodynamic center (of complete aircraft
less tailplane) based on wing area is CM,0=−0.032. Geometric data are given in Fig. P.13.8.

During a steady glide with zero thrust at 250m/s EAS in which CL=0.08, the aircraft meets a downgust of
equivalent “sharp-edged” speed 6m/s. Calculate the tail load, the gust load factor, and the forward inertia force,
ρ0=1.223kg/m3.

Ans. P=−28902N (down), n=−0.64, forward inertia force=40703N.

Fig. P.13.8



CHAPTER

14Fatigue

Fatigue has been discussed briefly in Section 10.7 when we examined the properties of materials and
also in Section 12.2 as part of the chapter on airworthiness. We shall now look at fatigue in greater
detail and consider factors affecting the life of an aircraft including safe life and fail safe structures,
designing against fatigue, the fatigue strength of components, the prediction of aircraft fatigue life, and
crack propagation.
Fatigue is defined as the progressive deterioration of the strength of amaterial or structural component

during service such that failure can occur at much lower stress levels than the ultimate stress level. As
we have seen, fatigue is a dynamic phenomenon which initiates small (micro) cracks in the material
or component and causes them to grow into large (macro) cracks; these, if not detected, can result in
catastrophic failure.
Fatigue damage can be produced in a variety of ways.Cyclic fatigue is caused by repeated fluctuating

loads. Corrosion fatigue is fatigue accelerated by surface corrosion of the material penetrating inward
so that the material strength deteriorates. Small-scale rubbing movements and abrasion of adjacent
parts cause fretting fatigue, while thermal fatigue is produced by stress fluctuations induced by thermal
expansions and contractions; the latter does not include the effect on the material strength of heat.
Finally, high-frequency stress fluctuations, due to vibrations excited by jet or propeller noise, cause
sonic or acoustic fatigue.
Clearly an aircraft’s structure must be designed so that fatigue does not become a problem. For

aircraft in general, the requirements that the strength of an aircraft throughout its operational life shall
be such as to ensure that the possibility of a disastrous fatigue failure shall be extremely remote (i.e.,
the probability of failure is less than 10−7) under the action of the repeated loads of variable magnitude
expected in service. Also it is required that the principal parts of the primary structure of the aircraft
be subjected to a detailed analysis and to load tests which demonstrate a safe life or that the parts of
the primary structure have fail-safe characteristics. These requirements do not apply to light aircraft
provided that zinc-rich aluminum alloys are not used in their construction and that wing stress levels
are kept low—that is, provided that a 3.05m/s upgust causes no greater stress than 14N/mm2.

14.1 SAFE LIFE AND FAIL-SAFE STRUCTURES
The danger of a catastrophic fatigue failure in the structure of an aircraft may be eliminated completely
or may become extremely remote if the structure is designed to have a safe life or to be fail-safe. In
the former approach, the structure is designed to have a minimum life during which it is known that no

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
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catastrophic damage occurs. At the end of this life, the structure must be replaced even though there
may be no detectable signs of fatigue. If a structural component is not economically replaceable when
its safe life has been reached, the complete structure must be written off. Alternatively, it is possible for
easily replaceable components such as undercarriage legs and mechanisms to have a safe life less than
that of the complete aircraft, since it would probably be more economical to use, say, two lightweight
undercarriage systems during the life of the aircraft rather than carry a heavier undercarriage which has
the same safe life as the aircraft.
The fail-safe approach relies on the fact that the failure of a member in a redundant structure does

not necessarily lead to the collapse of the complete structure, provided that the remaining members
are able to carry the load shed by the failed member and can withstand further repeated loads until the
presence of the failed member is discovered. Such a structure is called a fail-safe structure or a damage
tolerant structure.
Generally, it is more economical to design some parts of the structure to be fail-safe rather than to

have a long safe life, since such components can be lighter. When failure is detected, either through
a routine inspection or by some malfunction such as fuel leakage from a wing crack, the particular
aircraft may be taken out of service and repaired. However, the structure must be designed and the
inspection intervals arranged such that a failure—for example, a crack that is too small to be noticed at
one inspection—must not increase to a catastrophic size before the next inspection. The determination
of crack propagation rates is discussed later.
Some componentsmust be designed to have a safe life; these include landing gear, major wing joints,

wing–fuselage joints, and hinges on all-moving tailplanes or on variable geometry wings. Components
which may be designed to be fail-safe include wing skins which are stiffened by stringers and fuselage
skins which are stiffened by frames and stringers; the stringers and frames prevent skin cracks spreading
disastrously for a sufficient period of time for them to be discovered at a routine inspection.

14.2 DESIGNING AGAINST FATIGUE
Various precautions may be taken to ensure that an aircraft has an adequate fatigue life. We have
seen in Chapter 10 that the early aluminum–zinc alloys possessed high ultimate and proof stresses but
were susceptible to early failure under fatigue loading; choice of materials is therefore important. The
naturally aged aluminum–copper alloys possess good fatigue resistance but with lower static strengths.
Modern research is concentrating on alloys which combine high strength with high fatigue resistance.
Attention to detail design is equally important. Stress concentrations can arise at sharp corners and

abrupt changes in section. Fillets should therefore be provided at re-entrant corners, and cut-outs, such
as windows and access panels, should be reinforced. In machined panels, the material thickness should
be increased around bolt holes, while holes in primary bolted joints should be reamered to improve
surface finish; surface scratches and machine marks are sources of fatigue crack initiation. Joggles
in highly stressed members should be avoided, while asymmetry can cause additional stresses due to
bending.
In addition to sound structural and detail design, an estimation of the number, frequency, and mag-

nitude of the fluctuating loads an aircraft encounters is necessary. The fatigue load spectrum begins
when the aircraft taxis to its take-off position. During taxiing, the aircraft may be maneuvering over
uneven ground with a full payload so that wing stresses, for example, are greater than in the static case.
Also, during take-off and climb, and descent and landing, the aircraft is subjected to the greatest load
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fluctuations. The undercarriage is retracted and lowered; flaps are raised and lowered; there is an impact
on landing; the aircraft has to carry out maneuvers; finally, the aircraft, as we shall see, experiences a
greater number of gusts than during the cruise.
The loads corresponding to these various phases must be calculated before the associated stresses

can be obtained. For example, during take-off, wing bending stresses and shear stresses due to shear and
torsion are based on the total weight of the aircraft including full fuel tanks, and maximum payload all
factored by 1.2 to allow for a bump during each take-off on a hard runway or by 1.5 for a take-off from
grass. The loads produced during level flight and symmetricmaneuvers are calculated using themethods
described in Section 13.2. From these values, distributions of shear force, bending moment, and torque
may be found in, say, the wing by integrating the lift distribution. Loads due to gusts are calculated
using the methods described in Section 13.4. Thus, because of a single equivalent sharp-edged gust, the
load factor is given either by Eq. (13.25) or by Eq. (13.26).
Although it is a relatively simple matter to determine the number of load fluctuations during a

ground–air–ground cycle caused by standard operations such as raising and lowering flaps, retracting
and lowering the undercarriage, and so on, it is more difficult to estimate the number and magnitude
of gusts an aircraft encounters. For example, there is a greater number of gusts at low altitude (during
take-off, climb, and descent) than at high altitude (during cruise). Terrain (sea, flat land, mountains) also
affects the number and magnitude of gusts, as does weather. The use of radar enables aircraft to avoid
cumulus where gusts are prevalent but has little effect at low altitude in the climb and descent where
clouds cannot easily be avoided. The Engineering Sciences Data Unit (ESDU) has produced gust data
based on information collected by gust recorders carried by aircraft. These show, in graphical form (l10
versus h curves, h is altitude), the average distance flown at various altitudes for a gust having a velocity
greater than ±3.05m/s to be encountered. In addition, gust frequency curves give the number of gusts
of a given velocity per 1000 gusts of velocity 3.05m/s. Combining both sets of data enables the gust
exceedance to be calculated—that is, the number of gust cycles having a velocity greater than or equal
to a given velocity encountered per kilometer of flight.
Since an aircraft is subjected to the greatest number of load fluctuations during taxi–take-off–climb

and descent–standoff–landing, while little damage is caused during cruise, the fatigue life of an aircraft
does not depend on the number of flying hours but on the number of flights. However, the operational
requirements of aircraft differ from class to class. The Airbus is required to have a life free from fatigue
cracks of 24000 flights or 30000hours, while its economic repair life is 48000 flights or 60000hours; its
landing gear, however, is designed for a safe life of 32000 flights, after which it must be replaced. On the
other hand, the BAe 146, with a greater number of shorter flights per day than the Airbus, has a specified
crack-free life of 40000 flights and an economic repair life of 80000 flights. Although the above figures
are operational requirements, the nature of fatigue is such that it is unlikely that all of a given type
of aircraft will satisfy them. Of the total number of Airbus aircraft, at least 90 percent will achieve
the above values and 50 percent will be better; clearly, frequent inspections are necessary during an
aircraft’s life.

14.3 FATIGUE STRENGTH OF COMPONENTS
In Section 12.2.4, we discussed the effect of stress level on the number of cycles to failure of a mate-
rial such as mild steel. As the stress level is decreased, the number of cycles to failure increases,
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resulting in a fatigue endurance curve (the S–N curve) of the type shown in Fig. 12.2. Such a curve
corresponds to the average value of N at each stress amplitude, since there will be a wide range of
values of N for the given stress; even under carefully controlled conditions the ratio of maximum
N to minimum N may be as high as 10 :1. Two other curves may therefore be drawn, as shown in
Fig. 14.1, enveloping all or nearly all the experimental results; these curves are known as the confidence
limits. If 99.9 percent of all the results lie between the curves—in other words, only 1 in 1000 falls
outside—they represent the 99.9 percent confidence limits. If 99.99999 percent of results lie between
the curves, only 1 in 107 results will fall outside them and they represent the 99.99999 percent confidence
limits.
The results from tests on a number of specimens may be represented as a histogram in which the

number of specimens failing within certain ranges R ofN is plotted againstN . Then, ifNav is the average
value of N at a given stress amplitude, the probability of failure occurring at N cycles is given by

p(N) = 1

σ
√
2π
exp

[
−1
2

(
N −Nav

σ

)2]
(14.1)

in which σ is the standard deviation of the whole population of N values. The derivation of Eq. (14.1)
depends on the histogram approaching the profile of a continuous function close to the normal
distribution, which it does as the interval Nav/R becomes smaller and the number of tests increases.
The cumulative probability, which gives the probability that a particular specimen will fail at or below
N cycles, is defined as

P(N) =
N∫

−∞
p(N)dN (14.2)

The probability that a specimen endures more than N cycles is then 1 – P(N). The normal distribution
allows negative values ofN , which is clearly impossible in a fatigue testing situation. Other distributions,

Fig. 14.1

S–N diagram.



14.3 Fatigue Strength of Components 407

extreme value distributions, are more realistic and allow the existence of minimum fatigue endurances
and fatigue limits.
The damaging portion of a fluctuating load cycle occurs when the stress is tensile; this causes cracks

to open and grow. Therefore, if a steady tensile stress is superimposed on a cyclic stress, the maximum
tensile stress during the cycle will be increased and the number of cycles to failure will be decreased.
Conversely, if the steady stress is compressive, the maximum tensile stress decreases and the number
of cycles to failure increases. An approximate method of assessing the effect of a steady mean value of
stress is provided by a Goodman diagram, as shown in Fig. 14.2. This shows the cyclic stress amplitudes
which can be superimposed upon different mean stress levels to give a constant fatigue life. In Fig. 14.2,
Sa is the allowable stress amplitude, Sa,0 is the stress amplitude required to produce fatigue failure at N
cycles with zero mean stress, Sm is the mean stress, and Su is the ultimate tensile stress. If Sm=Su, any
cyclic stress will cause failure, while if Sm=0, the allowable stress amplitude is Sa,0. The equation of
the straight line portion of the diagram is

Sa
Sa,0

=
(
1− Sm

Su

)
(14.3)

Experimental evidence suggests a nonlinear relationship for particular materials. Equation (14.3) then
becomes

Sa
Sa,0

=
[
1−

(
Sm
Su

)m]
(14.4)

in which m lies between 0.6 and 2.
In practical situations, fatigue is not caused by a large number of identical stress cycles but by many

different stress amplitude cycles. The prediction of the number of cycles to failure therefore becomes
complex. Miner and Palmgren have proposed a linear cumulative damage law as follows. If N cycles of
stress amplitude Sa cause fatigue failure, then 1 cycle produces 1/N of the total damage to cause failure.

Fig. 14.2

Goodman diagram.
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Therefore, if r different cycles are applied in which a stress amplitude Sj ( j=1,2, . . . ,r) would cause
failure in Nj cycles, the number of cycles nj required to cause total fatigue failure is given by

r∑
j=1

nj
Nj

= 1 (14.5)

Although S–N curves may be readily obtained for different materials by testing a large number of small
specimens (coupon tests), it is not practicable to adopt the same approach for aircraft components, since
these are expensive to manufacture and the test program is too expensive to run for long periods of time.
However, such a program was initiated in the early 1950s to test the wings and tailplanes of Meteor
and Mustang fighters. These were subjected to constant amplitude loading until failure with different
specimens being tested at different load levels. Stresses were measured at points where fatigue was
expected (and actually occurred) and S–N curves plotted for the complete structure. The curves had the
usual appearance and at low stress levels had such large endurances that fatigue did not occur; thus, a
fatigue limit existed. It was found that the average S–N curve could be approximated to by the equation

Sa = 10.3(1+ 1000/√N) (14.6)

in which the mean stress was 90N/mm2. In general terms, Eq. (14.6) may be written as

Sa = S∞(1+C/
√
N) (14.7)

in which S∞ is the fatigue limit and C is a constant. Thus, Sa→S∞ as N→∞. Equation (14.7) may
be rearranged to give the endurance directly:

N = C2
(

S∞
Sa − S∞

)2
(14.8)

which shows clearly that as Sa→S∞, N→∞.
It has been found experimentally that N is inversely proportional to the mean stress as the latter

varies in the region of 90N/mm2, while C is virtually constant. This suggests a method of determining
a “standard” endurance curve (corresponding to a mean stress level of 90N/mm2) from tests carried out
on a few specimens at other mean stress levels. Suppose that Sm is the mean stress level, not 90N/mm2,
in tests carried out on a few specimens at an alternating stress level Sa,m where failure occurs at a mean
number of cycles Nm. Then, assuming that the S–N curve has the same form as Eq. (14.7),

Sa,m = S∞,m(1+C/
√
Nm) (14.9)

in whichC=1000 and S∞,m is the fatigue limit stress corresponding to the mean stress Sm. Rearranging
Eq. (14.9), we have

S∞,m = Sa,m/(1+C/
√
Nm) (14.10)

The number of cycles to failure at a mean stress of 90N/mm2 would have been, from the above,

N ′ = Sm
90
Nm (14.11)
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The corresponding fatigue limit stress would then have been, from a comparison with Eq. (14.10),

S′∞,m = Sa,m/(1+C/
√
N ′) (14.12)

The standard endurance curve for the component at a mean stress of 90N/mm2 is from Eq. (14.7)

Sa = S′∞,m/(1+C/
√
N) (14.13)

Substituting in Eq. (14.13) for S′∞,m from Eq. (14.12), we have

Sa = Sa,m

(1+C/
√
N ′)

(1+C/
√
N) (14.14)

in which N ′ is given by Eq. (14.11).
Equation (14.14) will be based on a few test results so that a “safe” fatigue strength is usually taken

to be three standard deviations below the mean fatigue strength. Hence, we introduce a scatter factor
Kn (>1) to allow for this; Eq. (14.14) then becomes

Sa
Sa,m

Kn(1+C/
√
N ′)

(1+C/
√
N) (14.15)

Kn varies with the number of test results available, and for a coefficient of variation of 0.1, Kn=1.45
for 6 specimens, Kn=1.445 for 10 specimens, Kn=1.44 for 20 specimens, and for 100 specimens or
more Kn=1.43. For typical S–N curves, a scatter factor of 1.43 is equivalent to a life factor of 3 to 4.

14.4 PREDICTION OF AIRCRAFT FATIGUE LIFE
We have seen that an aircraft suffers fatigue damage during all phases of the ground–air–ground cycle.
The various contributions to this damage may be calculated separately and hence the safe life of the
aircraft in terms of the number of flights calculated.
In the ground–air–ground cycle, the maximum vertical acceleration during take-off is 1.2 g for a

take-off from a runway or 1.5g for a take-off from grass. It is assumed that these accelerations occur
at zero lift and therefore produce compressive (negative) stresses, −STO, in critical components such
as the undersurface of wings. The maximum positive stress for the same component occurs in level
flight (at 1g) and is +S1g. The ground–air–ground cycle produces, on the undersurface of the wing, a
fluctuating stress SGAG=(S1g+STO)/2 about a mean stress SGAG(mean) =(S1g−STO)/2. Suppose that
tests show that for this stress cycle and mean stress, failure occurs after NG cycles. For a life factor of
3, the safe life is NG/3 so that the damage done during one cycle is 3/NG. This damage is multiplied by
a factor of 1.5 to allow for the variability of loading between different aircraft of the same type so that
the damage per flight DGAG from the ground–air–ground cycle is given by

DGAG = 4.5/NG (14.16)

Fatigue damage is also caused by gusts encountered in flight, particularly during the climb and descent.
Suppose that a gust of velocity ue causes a stress Su about a mean stress corresponding to level flight,
and suppose also that the number of stress cycles of this magnitude required to cause failure is N(Su);
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the damage caused by one cycle is then 1/N(Su). Therefore, from the Palmgren–Miner hypothesis, when
sufficient gusts of this and all other magnitudes together with the effects of all other load cycles produce
a cumulative damage of 1.0, fatigue failure will occur. It is therefore necessary to know the number and
magnitude of gusts likely to be encountered in flight.
Gust data have been accumulated over a number of years from accelerometer records from aircraft

flying over different routes and terrains, at different heights, and at different seasons. The ESDU data
sheets [Ref. 1] present the data in two forms, as we have previously noted. First, l10 against altitude
curves show the distancewhichmust be flown at a given altitude in order that a gust (positive or negative)
having a velocity ≥ 3.05m/s be encountered. It follows that 1/l10 is the number of gusts encountered
in unit distance (1km) at a particular height. Second, gust frequency distribution curves, r(ue) against
ue, give the number of gusts of velocity ue for every 1000 gusts of velocity 3.05m/s.
From these two curves, the gust exceedance E(ue) is obtained; E(ue) is the number of times a gust

of a given magnitude (ue) will be equaled or exceeded in 1km of flight. Thus, from the above,

number of gusts≥ 3.05m/s per km= 1/l10
number of gusts equal to ue per 1000 gusts equal to 3.05m/s= r(ue)

Hence,

number of gusts equal to ue per single gust equal to 3.05m/s= r(ue)/1000

It follows that the gust exceedance E(ue) is given by

E(ue) = r(ue)

1000l10
(14.17)

in which l10 is dependent on height. A good approximation for the curve of r(ue) against ue in the region
ue=3.05m/s is

r(ue) = 3.23× 105u−5.26e (14.18)

Consider now the typical gust exceedance curve shown in Fig. 14.3. In 1km of flight, there are likely to
be E(ue) gusts exceeding ue m/s and E(ue)−δE(ue) gusts exceeding ue+δue m/s. Thus, there will be
δE(ue) fewer gusts exceeding ue+δue m/s than ue m/s, and the increment in gust speed δue corresponds
to a number −δE(ue) of gusts at a gust speed close to ue. Half of these gusts will be positive (upgusts)
and half negative (downgusts) so that if it is assumed that each upgust is followed by a downgust of equal
magnitude, the number of complete gust cycles will be −δE(ue)/2. Suppose that each cycle produces
a stress S(ue) and that the number of these cycles required to produce failure is N(Su,e). The damage
caused by one cycle is then 1/N(Su,e), and over the gust velocity interval δue, the total damage δD is
given by

δD= − δE(ue)

2N(Su,e)
= −dE(ue)

due

δue
2N(Su,e)

(14.19)
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Fig. 14.3

Gust exceedance curve.

Integrating Eq. (14.19) over the whole range of gusts likely to be encountered, we obtain the total
damage Dg/km of flight. Thus,

Dg = −
∞∫
0

1

2N(Su,e)

dE(ue)

due
due (14.20)

Further, if the average block length journey of an aircraft is Rav, the average gust damage per flight is
DgRav. Also, some aircraft in a fleet experiences more gusts than others, since the distribution of gusts
is random. Therefore if, for example, it is found that one particular aircraft encounters 50 percent more
gusts than the average, its gust fatigue damage is 1.5Dg/km.
The gust damage predicted by Eq. (14.20) is obtained by integrating over a complete gust velocity

range from zero to infinity. Clearly, there will be a gust velocity below which no fatigue damage occurs,
since the cyclic stress produced will be below the fatigue limit stress of the particular component.
Equation (14.20) is therefore rewritten as

Dg = −
∞∫
uf

1

2N(Su,e)

dE(ue)

due
due (14.21)

in which uf is the gust velocity required to produce the fatigue limit stress.
We have noted previously that more gusts are encountered during climb and descent than during

cruise. Altitude therefore affects the amount of fatigue damage caused by gusts, and its effects may be
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determined as follows. Substituting for the gust exceedance E(ue) in Eq. (14.21) from Eq. (14.17), we
obtain

Dg = − 1

1000l10

∞∫
uf

1

2N(Su,e)

dr(ue)

due
due

or

Dg = 1

l10
dg per km (14.22)

in which l10 is a function of height h and

dg = − 1

1000

∞∫
uf

1

2N(Su,e)

dr(ue)

due
due

Suppose that the aircraft is climbing at a speed V with a rate of climb (ROC). The time taken for the
aircraft to climb from a height h to a height h+δh is δh/ROC, during which time it travels a distance
Vδh/ROC. Hence, from Eq. (14.22), the fatigue damage experienced by the aircraft in climbing through
a height δh is

1

l10
dg

V

ROC
δh

The total damage produced during a climb from sea level to an altitude H at a constant speed V and
ROC is

Dg,climb = dg V

ROC

H∫
0

dh

l10
(14.23)

Plotting 1/l10 against h from ESDU data sheets for aircraft having cloud warning radar and integrating
gives

3000∫
0

dh

l10
= 303

6000∫
3000

dh

l10
= 14

9000∫
6000

dh

l10
= 3.4

From the above
∫ 9000
0 dh/l10=320.4, from which it can be seen that approximately 95 percent of the

total damage in the climb occurs in the first 3000m.
An additional factor influencing the amount of gust damage is forward speed. For example, the

change in wing stress produced by a gust may be represented by

Su,e = k1ueVe (see Eq. (13.24)) (14.24)

in which the forward speed of the aircraft is in equivalent airspeed. From Eq. (14.24), we see that the
gust velocity uf required to produce the fatigue limit stress S∞ is

uf = S∞/k1Ve (14.25)
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The gust damage/km at different forward speeds Ve is then found using Eq. (14.21) with the appro-
priate value of uf as the lower limit of integration. The integral may be evaluated by using the known
approximate forms of N(Su,e) and E(ue) from Eqs. (14.15) and (14.17). From Eq. (14.15),

Sa = Su,e = S′∞,m
Kn

(
1+C/

√
N(Su,e)

)
from which

N(Su,e) =
(
C

Kn

)2( S′∞,m
Su,e− S′∞,m

)2

where Su,e=k1Veue and S′∞,m=k1Veuf . Also, Eq. (14.17) is

E(ue) = r(ue)

1000l10

or, substituting for r(ue) from Eq. (14.18),

E(ue) = 3.23× 105u−5.26e

1000l10

Equation (14.21) then becomes

Dg = −
∞∫
uf

1

2

(
Kn
C

)2(Su,e− S′∞,m
S′∞,m

)2(−3.23× 5.26× 105u−5.26e

1000l10

)
due

Substituting for Su,e and S′∞,m, we have

Dg = 16.99× 102
2l10

(
Kn
C

)2 ∞∫
uf

(
ue− uf
uf

)2
u−6.26e due

or

Dg = 16.99× 102
2l10

(
Kn
C

)2 ∞∫
uf

(
u−4.26e

u2f
− 2u−5.26e

uf
+ u−6.26e

)
due

from which

Dg = 46.55

2l10

(
Kn
C

)2
u−5.26f

or, in terms of the aircraft speed Ve,

Dg = 46.55

2l10

(
Kn
C

)2( k1Ve
S′∞,m

)5.26
per km (14.26)
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It can be seen from Eq. (14.26) that gust damage increases in proportion to V5.26e so that increasing
forward speed has a dramatic effect on gust damage.
The total fatigue damage suffered by an aircraft per flight is the sum of the damage caused by the

ground–air–ground cycle, the damage produced by gusts, and the damage due to other causes such as
pilot-induced maneuvers, ground turning and braking, and landing and take-off load fluctuations. The
damage produced by these other causes can be determined from load exceedance data. Thus, if this
extra damage per flight is Dextra, the total fractional fatigue damage per flight is

Dtotal = DGAG+DgRav+Dextra
or

Dtotal = 4.5/NG+DgRav+Dextra (14.27)

and the life of the aircraft in terms of flights is

Nflight = 1/Dtotal (14.28)

14.5 CRACK PROPAGATION
Wehave seen that the concept of fail-safe structures in aircraft construction relies on a damaged structure
being able to retain sufficient load-carrying capacity to prevent catastrophic failure, at least until the
damage is detected. It is therefore essential that the designer be able to predict how and at what rate
a fatigue crack will grow. The ESDU data sheets provide a useful introduction to the study of crack
propagation; some of the results are presented here.
The analysis of stresses close to a crack tip using elastic stress concentration factors breaks down,

since the assumption that the crack tip radius approaches zero results in the stress concentration factor
tending to infinity. Instead, linear elastic fracture mechanics analyzes the stress field around the crack
tip and identifies features of the field common to all cracked elastic bodies.

14.5.1 Stress Concentration Factor
There are three basic modes of crack growth, as shown in Fig. 14.4. Generally, the stress field in the
region of the crack tip is described by a two-dimensional model which may be used as an approximation
for many practical three-dimensional loading cases. Thus, the stress system at a distance r(r≤a) from
the tip of a crack of length 2a, shown in Fig. 14.5, can be expressed in the form

Sr ,Sθ ,Sr,θ = K

(2πr)
1
2

f (θ) (see [Ref. 2]) (14.29)

in which f (θ ) is a different function for each of the three stresses and K is the stress intensity factor;
K is a function of the nature and magnitude of the applied stress levels and also of the crack size. The

terms (2πr)
1
2 and f (θ ) map the stress field in the vicinity of the crack and are the same for all cracks

under external loads that cause crack openings of the same type.
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Fig. 14.4

Basic modes of crack growth.

Fig. 14.5

Stress field in the vicinity of a crack.

Equation (14.29) applies to all modes of crack opening, with K having different values depending
on the geometry of the structure, the nature of the applied loads, and the type of crack.
Experimental data show that crack growth and residual strength data are better correlated using K

than any other parameter. K may be expressed as a function of the nominal applied stress S and the
crack length in the form

K = S(πa) 12 α (14.30)

inwhichα is a nondimensional coefficient usually expressed as the ratio of crack length to any convenient
local dimension in the plane of the component; for a crack in an infinite plate under an applied uniform
stress level S remote from the crack, α=1.0. Alternatively, in cases where opposing loads P are applied
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at points close to the plane of the crack,

K = Pα

(πa)
1
2

(14.31)

in which P is the load/unit thickness. Equations (14.30) and (14.31) may be rewritten as

K = K0α (14.32)

where K0 is a reference value of the stress intensity factor which depends on the loading. For the simple
case of a remotely loaded plate in tension,

K0 = S(πa) 12 (14.33)

and Eqs. (14.32) and (14.30) are identical so that for a given ratio of crack length to plate width α is
the same in both formulations. In more complex cases, for example, the in-plane bending of a plate of
width 2b and having a central crack of length 2a,

K0 = 3Ma

4b3
(πa)

1
2 (14.34)

in whichM is the bending moment per unit thickness. Comparing Eqs. (14.34) and (14.30), we see that
S=3Ma/4b3, which is the value of direct stress given by basic bending theory at a point a distance
±a/2 from the central axis. However, if S was specified as the bending stress in the outer fibers of the
plate—at ±b—then S=3M/2b2; clearly the different specifications of S require different values of α.
On the other hand, the final value of K must be independent of the form of presentation used. Use of
Eqs. (14.30) through (14.32) depends on the form of the solution for K0, and care must be taken to
ensure that the formula used and the way in which the nominal stress is defined are compatible with
those used in the derivation of α.
There are a number of methods available for determining the value of K and α. In one method, the

solution for a component subjected to more than one type of loading is obtained from available standard
solutions using superposition, or, if the geometry is not covered, two or more standard solutions may
be compounded [Ref. 1]. Alternatively, a finite element analysis may be used.
The coefficient α in Eq. (14.30) has, as we have noted, different values depending on the plate and

crack geometries. Listed below are values of α for some of the more common cases.

(i) A semi-infinite plate having an edge crack of length a; α=1.12.
(ii) An infinite plate having an embedded circular crack or a semicircular surface crack, each of radius

a, lying in a plane normal to the applied stress; α=0.64.
(iii) An infinite plate having an embedded elliptical crack of axes 2a and 2b or a semielliptical crack

of width 2b in which the depth a is less than half the plate thickness each lying in a plane normal
to the applied stress; α=1.12� in which � varies with the ratio a/b as follows:

a/b 0 0.2 0.4 0.6 0.8
� 1.0 1.05 1.15 1.28 1.42

For a/b=1, the situation is identical to case (ii).
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(iv) A plate of finite width w having a central crack of length 2a, where a≤0.3w; α= [sec(aπ /w)]1/2.
(v) For a plate of finite width w having two symmetrical edge cracks each of depth 2a, Eq. (14.30)

becomes

K = S[w tan(πa/w) + (0.1w)sin(2πa/w)]1/2

From Eq. (14.29), it can be seen that the stress intensity at a point ahead of a crack can be expressed
in terms of the parameter K . Failure will then occur when K reaches a critical value Kc. This is known
as the fracture toughness of the material and has units MN/m3/2 or N/mm3/2.

14.5.2 Crack Tip Plasticity
In certain circumstances, it may be necessary to account for the effect of plastic flow in the vicinity of
the crack tip. This may be allowed for by estimating the size of the plastic zone and adding this to the
actual crack length to form an effective crack length 2a1. Thus, if rp is the radius of the plastic zone,
a1=a+ rp, and Eq. (14.30) becomes

Kp = S(πa1)12 α1 (14.35)

in which Kp is the stress intensity factor corrected for plasticity and α1 corresponds to a1. Thus, for
rp/t>0.5, that is, a condition of plane stress,

rp = 1

2π

(
K

fy

)2
or rp = a

2

(
S

fy

)2
α2 (see [Ref. 3]) (14.36)

in which fy is the yield proof stress of the material. For rp/t<0.02, a condition of plane strain

rp = 1

6π

(
K

fy

)2
(14.37)

For intermediate conditions, the correction should be such as to produce a conservative solution.
Dugdale [Ref. 4] showed that the fracture toughness parameter Kc is highly dependent on plate

thickness. In general, since the toughness of a material decreases with decreasing plasticity, it follows
that the true fracture toughness is that corresponding to a plane strain condition. This lower limiting
value is particularly important to consider in high-strength alloys, since these are prone to brittle failure.
In addition, the assumption that the plastic zone is circular is not representative in plane strain conditions.
Rice and Johnson [Ref. 5] showed that for a small amount of plane strain yielding, the plastic zone
extends as two lobes (Fig. 14.6) each inclined at an angle θ to the axis of the crack where θ =70◦, and
the greatest extent L and forward penetration (ry for θ =0) of plasticity are given by

L = 0.155(K/fy)
2

ry = 0.04 (K/fy)
2



418 CHAPTER 14 Fatigue

Fig. 14.6

Plane strain plasticity.

14.5.3 Crack Propagation Rates
Having obtained values of the stress intensity factor and the coefficient α, fatigue crack propagation
rates may be estimated. From these, the life of a structure containing cracks or crack-like defects may
be determined; alternatively, the loading condition may be modified or inspection periods arranged so
that the crack will be detected before failure.
Under constant amplitude loading, the rate of crack propagation may be represented graphically by

curves described in general terms by the law

da

dN
= f (R,�K) (see [Ref. 6]) (14.38)

in which �K is the stress intensity factor range and R=Smin/Smax. If Eq. (14.30) is used,

�K = (Smax− Smin)(πa)12 α (14.39)

Equation (14.39) may be corrected for plasticity under cyclic loading and becomes

�Kp = (Smax− Smin)(πa1)12 α1 (14.40)



14.5 Crack Propagation 419

in which a1=a+rp, where, for plane stress

rp = 1

8π

(
�K

fy

)2
(see [Ref. 7])

The curves represented by Eq. (14.38) may be divided into three regions. The first corresponds to a very
slow crack growth rate (<10−8 m/cycle) where the curves approach a threshold value of stress intensity
factor�K th corresponding to 4×10−11 m/cycle—in other words, no crack growth. In the second region
(10−8− 10−6 m/cycle), much of the crack life takes place and, for small ranges of �K , Eq. (14.38)
may be represented by

da

dN
= C(�K)n (see [Ref. 8]) (14.41)

in which C and n depend on the material properties; over small ranges of da/dN and �K , C and n
remain approximately constant. The third region corresponds to crack growth rates >10−6 m/cycle,
where instability and final failure occur.
An attempt has been made to describe the complete set of curves by the relationship

da

dN
= C(�K)n

(1−R)Kc− �K
(see [Ref. 9]) (14.42)

in which Kc is the fracture toughness of the material obtained from toughness tests. Integration of
Eqs. (14.41) or (14.42) analytically or graphically gives an estimate of the crack growth life of the
structure, that is, the number of cycles required for a crack to grow from an initial size to an unaccept-
able length, or the crack growth rate or failure, whichever is the design criterion. Thus, for example,
integration of Eq. (14.41) gives, for an infinite width plate for which α=1.0,

[N]NfNi = 1

C[(Smax− Smin)π 1
2 ]n

[
a(1−n/2)

1− n/2

]af
ai

(14.43)

for n>2. An analytical integration may only be carried out if n is an integer and α is in the form of a
polynomial; otherwise graphical or numerical techniques must be used.
Substituting the limits in Eq. (14.43) and taking Ni=0, the number of cycles to failure is given by

Nf = 2

C(n− 2)[(Smax− Sm)π1/2]n

[
1

a(n−2)/2i

− 1

a(n−2)/2f

]
(14.44)

Example 14.1
An infinite plate contains a crack having an initial length of 0.2mm and is subjected to a cyclic repeated
stress range of 175N/mm2. If the fracture toughness of the plate is 1708N/mm3/2 and the rate of crack
growth is 40×10−15 (�K)4 mm/cycle, determine the number of cycles to failure.
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The crack length at failure is given by Eq. (14.30) in which α=1, K=1708N/mm3/2, and
S=175N/mm2:

af = 17082

π × 1752 = 30.3mm

Also, n=4 so that substituting the relevant parameters in Eq. (14.44) gives

Nf = 1

40× 10−15[175× π1/2]4

(
1

0.1
− 1

30.3

)
from which

Nf = 26919 cycles
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Problems
P.14.1 A material has a fatigue limit of ±230N/mm2 and an ultimate tensile strength of 870N/mm2. If the safe
range of stress is determined by the Goodman prediction, calculate its value.

Ans. 363N/mm2.
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P.14.2 A more accurate estimate for the safe range of stress for the material of P.14.1 is given by the nonlinear
form of the Goodman prediction in which m=2. Calculate its value.
Ans. 432N/mm2.

P.14.3 A steel component is subjected to a reversed cyclic loading of 100 cycles/day over a period of time in which
±160N/mm2 is applied for 200 cycles,±140 N/mm2 is applied for 200 cycles, and±100N/mm2 is applied for 600
cycles. If the fatigue life of the material at each of these stress levels is 104, 105, and 2×105 cycles, respectively,
estimate the life of the component using Miner’s law.

Ans. 400 days.

P.14.4 An infinite steel plate has a fracture toughness of 3320N/mm3/2 and contains a 4mm long crack. Calculate
the maximum allowable design stress that could be applied round the boundary of the plate.

Ans. 1324N/mm2.

P.14.5 A semi-infinite plate has an edge crack of length 0.4mm. If the plate is subjected to a cyclic
repeated stress loading of 180N/mm2, its fracture toughness is 1800N/mm3/2, and the rate of crack growth is
30×10−15(�K)4 mm/cycle, determine the crack length at failure and the number of cycles to failure.

Ans. 25.4mm, 7916 cycles.

P.14.6 An aircraft’s cruise speed is increased from 200 to 220m/s. Determine the percentage increase in gust
damage this would cause.

Ans. 65 percent.

P.14.7 The average block length journey of an executive jet airliner is 1000km and its cruise speed is 240m/s.
If the damage during the ground–air–ground cycle may be assumed to be 10 percent of the total damage during a
complete flight, determine the percentage increase in the life of the aircraft when the cruising speed is reduced to
235m/s.

Ans. 12 percent.
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CHAPTER

15Bending of Open and Closed,
Thin-Walled Beams

In Chapter 11, we discussed the various types of structural components found in aircraft construction
and the various loads they support. We saw that an aircraft is basically an assembly of stiffened shell
structures ranging from the single-cell closed section fuselage to multicellular wings and tail surfaces,
each subjected to bending, shear, torsional, and axial loads. Other, smaller portions of the structure
consist of thin-walled channel, T-, Z-, “top-hat”-, or I-sections, which are used to stiffen the thin
skins of the cellular components and provide support for internal loads from floors, engine mountings,
and so forth. Structural members such as these are known as open section beams, whereas the cellular
components are termed closed section beams; clearly, both types of beam are subjected to axial, bending,
shear, and torsional loads. In this chapter, we shall investigate the stresses and displacements in thin-
walled open and single-cell closed section beams produced by bending loads.
In Chapter 1, we saw that an axial load applied to a member produces a uniform direct stress across

the cross section of the member. A different situation arises when the applied loads cause a beam to
bend which, if the loads are vertical, will take up a sagging (�) or hogging shape (�). This means
that for loads which cause a beam to sag the upper surface of the beam must be shorter than the lower
surface, as the upper surface becomes concave and the lower one convex; the reverse is true for loads
which cause hogging. The strains in the upper regions of the beam will, therefore, be different from
those in the lower regions, and since we have established that stress is directly proportional to strain
(Eq. (1.40)), it follows that the stress will vary through the depth of the beam.
The truth of this can be demonstrated by a simple experiment. Take a reasonably long rectangular

rubber eraser and draw three or four lines on its longer faces as shown in Fig. 15.1(a); the reason for
this will become clear a little later. Now hold the eraser between the thumb and forefinger at each end
and apply pressure as shown by the direction of the arrows in Fig. 15.1(b). The eraser bends into the
shape shown, and the lines on the side of the eraser remain straight but are now farther apart at the top
than at the bottom.
Since, in Fig. 15.1(b), the upper fibers have been stretched and the lower fibers compressed, there

will be fibers somewhere in between which are neither stretched nor compressed; the plane containing
these fibers is called the neutral plane.
Now rotate the eraser so that its shorter sides are vertical and apply the same pressure with your

fingers. The eraser again bends but now requires much less effort. It follows that the geometry and
orientation of a beam section must affect its bending stiffness. This is more readily demonstrated with
a plastic ruler. When flat it requires hardly any effort to bend it, but when held with its width vertical,
it becomes almost impossible to bend.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00015-4 423
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Fig. 15.1

Bending of a rubber eraser.

15.1 SYMMETRICAL BENDING
Although symmetrical bending is a special case of the bending of beams of arbitrary cross section, we
shall investigate the former first so that the more complex general case may be more easily understood.
Symmetrical bending arises in beamswhich have either singly or doubly symmetrical cross sections;

examples of both types are shown inFig. 15.2. Suppose that a length of beam, of rectangular cross section,
say, is subjected to a pure, sagging bending moment,M, applied in a vertical plane. We shall define this
later as a negative bending moment. The length of beam will bend into the shape shown in Fig. 15.3(a)
in which the upper surface is concave and the lower convex. It can be seen that the upper longitudinal
fibers of the beam are compressed, while the lower fibers are stretched. It follows that, as in the case of
the eraser, between these two extremes there are fibers that remain unchanged in length.
The direct stress therefore varies through the depth of the beam from compression in the upper fibers

to tension in the lower. Clearly, the direct stress is zero for the fibers that do not change in length; we
have called the plane containing these fibers the neutral plane. The line of intersection of the neutral
plane and any cross section of the beam is termed the neutral axis (Fig. 15.3(b)).
The problem, therefore, is to determine the variation of direct stress through the depth of the beam,

the values of the stresses, and subsequently to find the corresponding beam deflection.

15.1.1 Assumptions
The primary assumption made in determining the direct stress distribution produced by pure bending
is that plane cross sections of the beam remain plane and normal to the longitudinal fibers of the beam
after bending. Again, we saw this from the lines on the side of the eraser. We shall also assume that the
material of the beam is linearly elastic—that is, it obeys Hooke’s law and that the material of the beam
is homogeneous.
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Fig. 15.2

Symmetrical section beams.

Fig. 15.3

Beam subjected to a pure sagging bending moment.

15.1.2 Direct Stress Distribution
Consider a length of beam (Fig. 15.4(a)) that is subjected to a pure, sagging bendingmoment,M, applied
in a vertical plane; the beam cross section has a vertical axis of symmetry as shown in Fig. 15.4(b). The
bending moment will cause the length of beam to bend in a similar manner to that shown in Fig. 15.3(a)
so that a neutral plane will exist which is, as yet, unknown distances y1 and y2 from the top and bottom
of the beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz, in which the
origin O lies in the neutral plane of the beam. We shall now investigate the behavior of an elemental
length, δz, of the beam formed by parallel sections MIN and PGQ (Fig. 15.4(a)) and also the fiber ST
of cross-sectional area δA a distance y above the neutral plane. Clearly, before bending takes place
MP= IG=ST=NQ=δz.
The bending momentM causes the length of beam to bend about a center of curvature C as shown in

Fig. 15.5(a). Since the element is small in length and a pure moment is applied, we can take the curved
shape of the beam to be circular with a radius of curvature R measured to the neutral plane. This is a
useful reference point, since, as we have seen, strains and stresses are zero in the neutral plane.
The previously parallel plane sections MIN and PGQ remain plane as we have demonstrated but are

now inclined at an angle δθ to each other. The length MP is now shorter than δz as is ST, while NQ is
longer; IG, being in the neutral plane, is still of length δz. Since the fiber ST has changed in length, it
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Fig. 15.4

Bending of a symmetrical section beam.

Fig. 15.5

Length of beam subjected to a pure bending moment.

has suffered a strain εz which is given by

εz = change in length

original length

Then,

εz = (R− y)δθ − δz

δz

that is,

εz = (R− y)δθ −Rδθ

Rδθ
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so that

εz = − y
R

(15.1)

The negative sign in Eq. (15.1) indicates that fibers in the region where y is positive will shorten when
the bending moment is negative. Then, from Eq. (1.40), the direct stress σz in the fiber ST is given by

σz = −E y
R

(15.2)

The direct or normal force on the cross section of the fiber ST is σzδA. However, since the direct stress
in the beam section is due to a pure bending moment, in other words, there is no axial load, the resultant
normal force on the complete cross section of the beam must be zero. Then

∫
A

σz dA= 0, (15.3)

where A is the area of the beam cross section.
Substituting for σz in Eq. (15.3) from (15.2) gives

−E
R

∫
A

ydA= 0 (15.4)

in which both E and R are constants for a beam of a givenmaterial subjected to a given bendingmoment.
Therefore, ∫

A

ydA= 0 (15.5)

Equation (15.5) states that the first moment of the area of the cross section of the beam with respect
to the neutral axis—the x axis—is equal to zero. Thus, we see that the neutral axis passes through the
centroid of area of the cross section. Since the y axis in this case is also an axis of symmetry, it must
also pass through the centroid of the cross section. Hence the origin, O, of the coordinate axes coincides
with the centroid of area of the cross section.
Equation (15.2) shows that for a sagging (i.e., negative) bending moment, the direct stress in the

beam section is negative (i.e., compressive) when y is positive and positive (i.e., tensile) when y is
negative.
Consider now the elemental strip δA in Fig. 15.4(b); this is, in fact, the cross section of the fiber ST.

The strip is above the neutral axis so that there will be a compressive force acting on its cross section of
σzδAwhich is numerically equal to (Ey/R)δA from Eq. (15.2). Note that this force will act at all sections
along the length of ST. At S, this force will exert a clockwise moment (Ey/R)yδA about the neutral axis,
while at T, the force will exert an identical anticlockwise moment about the neutral axis. Considering
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either end of ST, we see that the moment resultant about the neutral axis of the stresses on all such fibers
must be equivalent to the applied negative moment M; that is,

M = −
∫
A

E
y2

R
dA

or

M = −E
R

∫
A

y2dA (15.6)

The term
∫
A y
2dA is known as the second moment of area of the cross section of the beam about the

neutral axis and is given the symbol I . Rewriting Eq. (15.6), we have

M = −EI
R

(15.7)

or, combining this expression with Eq. (15.2)

M

I
= −E

R
= σz

y
(15.8)

From Eq. (15.8), we see that

σz = My

I
(15.9)

The direct stress, σz, at any point in the cross section of a beam is therefore directly proportional to
the distance of the point from the neutral axis and so varies linearly through the depth of the beam as
shown, for the section JK, in Fig. 15.5(b). Clearly, for a positive bending moment σz is positive—that is,
tensile—when y is positive and compressive (i.e., negative) when y is negative. Thus, in Fig. 15.5(b),

σz,1 = My1
I
(compression) σz,2 = My2

I
(tension) (15.10)

Furthermore, we see from Eq. (15.7) that the curvature, 1/R, of the beam is given by

1

R
= M

EI
(15.11)

and is therefore directly proportional to the applied bending moment and inversely proportional to the
product EI which is known as the flexural rigidity of the beam.

Example 15.1
The cross section of a beam has the dimensions shown in Fig. 15.6(a). If the beam is subjected to a
negative bending moment of 100kNm applied in a vertical plane, determine the distribution of direct
stress through the depth of the section.
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Fig. 15.6

Direct stress distribution in beam of Example 15.1.

The cross section of the beam is doubly symmetrical so that the centroid, C, of the section, and
therefore the origin of axes, coincides with the midpoint of the web. Furthermore, the bending moment
is applied to the beam section in a vertical plane so that the x axis becomes the neutral axis of the beam
section; therefore, we need to calculate the second moment of area, Ixx , about this axis.

Ixx = 200× 3003
12

− 175× 2603
12

= 193.7× 106mm4 (see Section 15.4)

From Eq. (15.9), the distribution of direct stress, σz, is given by

σz = − 100× 106
193.7× 106 y= −0.52y (i)

The direct stress, therefore, varies linearly through the depth of the section from a value

−0.52× (+150) = −78N/mm2 (compression)

at the top of the beam to

−0.52× (−150) = +78N/mm2 (tension)

at the bottom as shown in Fig. 15.5(b).



430 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams

Example 15.2
Now determine the distribution of direct stress in the beam of Example 15.1 if the bending moment is
applied in a horizontal plane and in a clockwise sense about Cy when viewed in the direction yC.

In this case, the beam will bend about the vertical y axis which therefore becomes the neutral axis
of the section. Thus, Eq. (15.9) becomes

σz = M

Iyy
x, (i)

where Iyy is the second moment of area of the beam section about the y axis. Again from Section 15.4,

Iyy = 2× 20× 2003
12

+ 260× 253
12

= 27.0× 106mm4

Hence, substituting for M and Iyy in Eq. (i)

σz = 100× 106
27.0× 106 x = 3.7x

We have not specified a sign convention for bending moments applied in a horizontal plane.
However, a physical appreciation of the problem shows that the left-hand edges of the beam are
in compression, while the right-hand edges are in tension. Again the distribution is linear and
varies from 3.7× (−100)=−370N/mm2 (compression) at the left-hand edges of each flange to
3.7× (+100)=+370N/mm2 (tension) at the right-hand edges.
We note that themaximum stresses in this example are verymuch greater than those in Example 15.1.

This is due to the fact that the bulk of the material in the beam section is concentrated in the region of
the neutral axis where the stresses are low. The use of an I-section in this manner would therefore be
structurally inefficient.

Example 15.3
The beam section of Example 15.1 is subjected to a bending moment of 100kNm applied in a plane
parallel to the longitudinal axis of the beam but inclined at 30◦ to the left of vertical. The sense of the
bending moment is clockwise when viewed from the left-hand edge of the beam section. Determine the
distribution of direct stress.

The bending moment is first resolved into two components, Mx in a vertical plane and My in a
horizontal plane. Equation (15.9) may then be written in two forms

σz = Mx
Ixx
y σz = My

Iyy
x (i)

The separate distributions can then be determined and superimposed.Amore directmethod is to combine
the two equations (i) to give the total direct stress at any point (x, y) in the section. Thus,

σz = Mx
Ixx
y+ My

Iyy
x (ii)
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Now

Mx = 100cos30◦= 86.6kNm
My = 100sin30◦ = 50.0kNm

}
(iii)

Mx is, in this case, a positive bending moment producing tension in the upper half of the beam where
y is positive. Also, My produces tension in the left-hand half of the beam where x is negative; we shall
therefore call My a negative bending moment. Substituting the values of Mx and My from Eq. (iii) but
with the appropriate sign in Eq. (ii) together with the values of Ixx and Iyy from Examples 15.1 and 15.2,
we obtain

σz = 86.6× 106
193.7× 106 y− 50.0× 106

27.0× 106 x (iv)

or

σz = 0.45y− 1.85x (v)

Equation (v) gives the value of direct stress at any point in the cross section of the beam and may
also be used to determine the distribution over any desired portion. Thus, on the upper edge of the top
flange y=+150mm, 100mm≥x≥−100mm, so that the direct stress varies linearly with x. At the top
left-hand corner of the top flange,

σz = 0.45× (+150) − 1.85× (−100) = +252.5N/mm2 (tension)

At the top right-hand corner,

σz = 0.45× (+150) − 1.85× (+100) = −117.5N/mm2 (compression)

The distributions of direct stress over the outer edge of each flange and along the vertical axis of
symmetry are shown in Fig. 15.7. Note that the neutral axis of the beam section does not in this case
coincide with either the x or y axis, although it still passes through the centroid of the section. Its
inclination, α, to the x axis, say, can be found by setting σz=0 in Eq. (v). Then,

0= 0.45y− 1.85x
or

y

x
= 1.85

0.45
= 4.11= tanα

which gives

α = 76.3◦

Note that α may be found in general terms from Eq. (ii) by again setting σz=0. Hence,
y

x
= −MyIxx

MxIyy
= tanα (15.12)
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Fig. 15.7

Direct stress distribution in beam of Example 15.3.

or

tanα = MyIxx
MxIyy

since y is positive and x is positive for a positive value of α. We shall define in a slightly different way
in Section 15.2.4 for beams of unsymmetrical section.

15.1.3 Anticlastic Bending
In the rectangular beam section shown in Fig. 15.8(a), the direct stress distribution due to a negative
bending moment applied in a vertical plane varies from compression in the upper half of the beam
to tension in the lower half (Fig. 15.8(b)). However, due to the Poisson effect, the compressive stress
produces a lateral elongation of the upper fibers of the beam section, while the tensile stress produces a
lateral contraction of the lower. The section does not therefore remain rectangular but distorts as shown
in Fig. 15.8(c); the effect is known as anticlastic bending.
Anticlastic bending is of interest in the analysis of thin-walled box beams in which the cross sections

aremaintained by stiffening ribs. The prevention of anticlastic distortion induces local variations in stress
distributions in the webs and covers of the box beam and also in the stiffening ribs.
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Fig. 15.8

Anticlastic bending of a beam section.

15.2 UNSYMMETRICAL BENDING
We have shown that the value of direct stress at a point in the cross section of a beam subjected to
bending depends on the position of the point, the applied loading, and the geometric properties of the
cross section. It follows that it is of no consequence whether the cross section is open or closed. We,
therefore, derive the theory for a beam of arbitrary cross section and then discuss its application to
thin-walled open and closed section beams subjected to bending moments.
The assumptions are identical to thosemade for symmetrical bending and are listed in Section 15.1.1.

However, beforewe derive an expression for the direct stress distribution in a beam subjected to bending,
we shall establish sign conventions for moments, forces, and displacements; investigate the effect of
choice of section on the positive directions of these parameters, and discuss the determination of the
components of a bending moment applied in any longitudinal plane.

15.2.1 Sign Conventions and Notation
Forces, moments, and displacements are referred to an arbitrary system of axes Oxyz, of which Oz is
parallel to the longitudinal axis of the beam and Oxy are axes in the plane of the cross section. We
assign the symbols M, S, P, T , and w to bending moment, shear force, axial or direct load, torque, and
distributed load intensity, respectively, with suffixes where appropriate to indicate sense or direction.
Thus, Mx is a bending moment about the x axis, Sx is a shear force in the x direction, and so on.
Figure 15.9 shows positive directions and senses for the above loads and moments applied externally to
a beam and also the positive directions of the components of displacement u, v, andw of any point in the
beam cross section parallel to the x, y, and z axes, respectively. A further condition defining the signs
of the bending momentsMx andMy is that they are positive when they induce tension in the positive xy
quadrant of the beam cross section.
If we refer internal forces and moments to that face of a section which is seen when viewed in the

direction zO, and then, as shown in Fig. 15.10, positive internal forces and moments are in the same
direction and sense as the externally applied loads, whereas on the opposite face they form an opposing



434 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams

Fig. 15.9

Notation and sign convention for forces, moments, and displacements.

Fig. 15.10

Internal force system.

system. The former system, which we shall use, has the advantage that direct and shear loads are always
positive in the positive directions of the appropriate axes whether they are internal loads or not. It must
be realized, though, that internal stress resultants then become equivalent to externally applied forces
and moments and are not in equilibrium with them.
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15.2.2 Resolution of Bending Moments
A bending moment M applied in any longitudinal plane parallel to the z axis may be resolved into
components Mx and My by the normal rules of vectors. However, a visual appreciation of the situation
is often helpful. Referring to Fig. 15.11, we see that a bending moment M in a plane at an angle θ to
Ox may have components of differing sign depending on the size of θ . In both cases, for the sense of
M shown

Mx =M sinθ

My =M cosθ
which give, for θ <π/2, Mx and My positive (Fig. 15.11(a)) and for θ >π/2, Mx positive and My
negative (Fig. 15.11(b)).

15.2.3 Direct Stress Distribution due to Bending
Consider a beam having the arbitrary cross section shown in Fig. 15.12(a). The beam supports bending
moments Mx and My and bends about some axis in its cross section which is therefore an axis of zero
stress or a neutral axis (NA). Let us suppose that the origin of axes coincides with the centroid C of the
cross section and that the neutral axis is a distance p from C. The direct stress σz on an element of area
δA at a point (x, y) and a distance ξ from the neutral axis is, from the third of Eq. (1.42)

σz = Eεz (15.13)

If the beam is bent to a radius of curvature ρ about the neutral axis at this particular section then,
since plane sections are assumed to remain plane after bending, and by a comparison with symmetrical
bending theory

εz = ξ

ρ

Fig. 15.11

Resolution of bending moments: (a) θ < 90◦ and (b) θ > 90◦.
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Fig. 15.12

Determination of neutral axis position and direct stress due to bending.

Substituting for εz in Eq. (15.13), we have

σz = Eξ

ρ
(15.14)

The beam supports pure bending moments so that the resultant normal load on any section must be
zero. Hence, ∫

A

σz dA= 0

Therefore, replacing σz in this equation from Eq. (15.14) and cancelling the constant E/ρ gives∫
A

ξ dA= 0

that is, the first moment of area of the cross section of the beam about the neutral axis is zero. It follows
that the neutral axis passes through the centroid of the cross section as shown in Fig. 15.12(b), which
is the result we obtained for the case of symmetrical bending.
Suppose that the inclination of the neutral axis to Cx is α (measured clockwise from Cx), then

ξ = x sinα + ycosα (15.15)

and from Eq. (15.14),

σz = E

ρ
(x sinα + ycosα) (15.16)
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The moment resultants of the internal direct stress distribution have the same sense as the applied
moments Mx and My. Therefore,

Mx =
∫
A

σzydA, My =
∫
A

σzxdA (15.17)

Substituting for σz from Eq. (15.16) in (15.17) and defining the second moments of area of the section
about the axes Cx, Cy as

Ixx =
∫
A

y2 dA, Iyy =
∫
A

x2 dA, Ixy =
∫
A

xydA

gives

Mx = E sinα

ρ
Ixy+ E cosα

ρ
Ixx , My = E sinα

ρ
Iyy+ E cosα

ρ
Ixy

or, in matrix form {
Mx
My

}
= E

ρ

[
Ixy Ixx
Iyy Ixy

]{
sinα

cosα

}
from which

E

ρ

{
sinα

cosα

}
=
[
Ixy Ixx
Iyy Ixy

]−1{Mx
My

}
that is,

E

ρ

{
sinα

cosα

}
= 1

IxxIyy− I2xy

[−Ixy Ixx
Iyy −Ixy

]{
Mx
My

}

so that, from Eq. (15.16),

σz =
(
MyIxx −MxIxy
IxxIyy− I2xy

)
x+

(
MxIyy−MyIxy
IxxIyy− I2xy

)
y (15.18)

Alternatively, Eq. (15.18) may be rearranged in the form

σz = Mx(Iyyy− Ixyx)
IxxIyy− I2xy

+ My(Ixxx− Ixyy)
IxxIyy− I2xy

(15.19)

From Eq. (15.19) it can be seen that if, say,My=0, the momentMx produces a stress which varies with
both x and y; similarly for My if Mx=0.
In the case where the beam cross section has either (or both) Cx or Cy as an axis of symmetry, the

product second moment of area Ixy is zero and Cxy are principal axes. Equation (15.19) then reduces to

σz = Mx
Ixx
y+ My

Iyy
x (15.20)
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Further, if either My or Mx is zero, then

σz = Mx
Ixx
y or σz = My

Iyy
x (15.21)

Equations (15.20) and (15.21) are those derived for the bending of beams having at least a singly
symmetrical cross section (see Section 15.1). It may also be noted that in Eq. (15.21) σz=0 when, for
the first equation, y=0 and for the second equation when x=0. Therefore, in symmetrical bending
theory, the x axis becomes the neutral axis when My=0 and the y axis becomes the neutral axis when
Mx=0. Thus, we see that the position of the neutral axis depends on the form of the applied loading as
well as the geometrical properties of the cross section.
There exists, in any unsymmetrical cross section, a centroidal set of axes forwhich the product second

moment of area is zero (see [Ref. 1]). These axes are then principal axes and the direct stress distribution
referred to these axes takes the simplified form of Eqs. (15.20) or (15.21). It would therefore appear that
the amount of computation can be reduced if these axes are used. This is not the case, however, unless
the principal axes are obvious from inspection, since the calculation of the position of the principal
axes, the principal sectional properties, and the coordinates of points at which the stresses are to be
determined consumes a greater amount of time than direct use of Eqs. (15.18) or (15.19) for an arbitrary
but convenient set of centroidal axes.

15.2.4 Position of the Neutral Axis
The neutral axis always passes through the centroid of area of a beam’s cross section, but its inclination
α (see Fig. 15.12(b)) to the x axis depends on the form of the applied loading and the geometrical
properties of the beam’s cross section.
At all points on the neutral axis the direct stress is zero. Therefore, from Eq. (15.18),

0=
(
MyIxx −MxIxy
IxxIyy− I2xy

)
xNA+

(
MxIyy−MyIxy
IxxIyy− I2xy

)
yNA,

where xNA and yNA are the coordinates of any point on the neutral axis. Hence,

yNA
xNA

= −MyIxx −MxIxy
MxIyy−MyIxy

or, referring to Fig. 15.12(b) and noting that when α is positive xNA and yNA are of opposite sign

tanα = MyIxx −MxIxy
MxIyy−MyIxy (15.22)

Example 15.4
A beam having the cross section shown in Fig. 15.13 is subjected to a bending moment of 1500Nm
in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which
it acts.
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Fig. 15.13

Cross section of beam in Example 15.4.

The position of the centroid of the section may be found by taking moments of areas about some
convenient point. Thus,

(120× 8+ 80× 8)y= 120× 8× 4+ 80× 8× 48
giving

y= 21.6mm
and

(120× 8+ 80× 8)x = 80× 8× 4+ 120× 8× 24
giving

x = 16mm
The next step is to calculate the section properties referred to axes Cxy (see Section 15.4)

Ixx = 120× (8)3

12
+ 120× 8× (17.6)2+ 8× (80)3

12
+ 80× 8× (26.4)2

= 1.09× 106mm4

Iyy = 8× (120)3

12
+ 120× 8× (8)2+ 80× (8)3

12
+ 80× 8× (12)2

= 1.31× 106mm4
Ixy = 120× 8× 8× 17.6+ 80× 8× (−12) × (−26.4)

= 0.34× 106mm4
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Since Mx=1500Nm and My=0, we have, from Eq. (15.19),
σz = 1.5y− 0.39x (i)

in which the units are N and mm.
By inspection of Eq. (i), we see that σx will be a maximum at F where x=−8mm, y=−66.4mm.

Thus,

σz,max = −96N/mm2 (compressive)

In some cases, the maximum value cannot be obtained by inspection so that values of σz at several
points must be calculated.

15.2.5 Load Intensity, Shear Force, and Bending Moment
Relationships, General Case

Consider an element of length δ z of a beam of unsymmetrical cross section subjected to shear forces,
bending moments, and a distributed load of varying intensity, all in the yz plane as shown in Fig. 15.14.
The forces and moments are positive in accordance with the sign convention previously adopted. Over
the length of the element we may assume that the intensity of the distributed load is constant. Therefore,
for equilibrium of the element in the y direction(

Sy+ ∂Sy
∂z

δz

)
+wyδz− Sy = 0

from which

wy = −∂Sy
∂z

Taking moments about A, we have(
Mx + ∂Mx

∂z
δz

)
−
(
Sy+ ∂Sy

∂z
δz

)
δz−wy (δz)

2

2
−Mx = 0

Fig. 15.14

Equilibrium of beam element supporting a general force system in the yz plane.
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or, when second-order terms are neglected

Sy = ∂Mx
∂z

We may combine these results into a single expression

−wy = ∂Sy
∂z

= ∂2Mx
∂z2

(15.23)

Similarly for loads in the xz plane,

−wx = ∂Sx
∂z

= ∂2My
∂z2

(15.24)

15.3 DEFLECTIONS DUE TO BENDING
We have noted that a beam bends about its neutral axis whose inclination relative to arbitrary centroidal
axes is determined from Eq. (15.22). Suppose that at some section of an unsymmetrical beam the
deflection normal to the neutral axis (and therefore an absolute deflection) is ζ , as shown in Fig. 15.15.
In other words, the centroid C is displaced from its initial position CI through an amount ζ to its final
position CF. Suppose also that the center of curvature R of the beam at this particular section is on the
opposite side of the neutral axis to the direction of the displacement ζ and that the radius of curvature
is ρ. For this position of the center of curvature and from the usual approximate expression for cur-
vature, we have

1

ρ
= d2ζ

dz2
(15.25)

Fig. 15.15

Determination of beam deflection due to bending.
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The components u and v of ζ are in the negative directions of the x and y axes, respectively, so that

u= −ζ sinα, v= −ζ cosα (15.26)

Differentiating Eqs. (15.26) twice with respect to z and then substituting for ζ from Eq. (15.25), we
obtain

sinα

ρ
= −d

2u

dz2
,
cosα

ρ
= −d

2v

dz2
(15.27)

In the derivation of Eq. (15.18), we see that

1

ρ

{
sinα

cosα

}
= 1

E(IxxIyy− I2xy)
[−Ixy Ixx
Iyy −Ixy

]{
Mx
My

}
(15.28)

Substituting in Eqs. (15.28) for sin α/ρ and cos α/ρ from Eqs. (15.27) and writing u′′ =d2u/dz2,
v′′ =d2v/dz2, we have {

u′′
v′′
}

= −1
E(IxxIyy− I2xy)

[−Ixy Ixx
Iyy −Ixy

]{
Mx
My

}
(15.29)

It is instructive to rearrange Eq. (15.29) as follows{
Mx
My

}
= −E

[
Ixy Ixx
Iyy Ixy

]{
u′′
v′′
}
(see derivation of Eq. (15.18)) (15.30)

that is,

Mx = −EIxyu′′ −EIxxv′′
My = −EIyyu′′ −EIxyv′′

}
(15.31)

The first of Eqs. (15.31) shows that Mx produces curvatures—that is, deflections—in both the xz
and yz planes even thoughMy=0; similarly forMy whenMx=0. Thus, for example, an unsymmetrical
beam will deflect both vertically and horizontally even though the loading is entirely in a vertical plane.
Similarly, vertical and horizontal components of deflection in an unsymmetrical beam are produced by
horizontal loads.
For a beam having either Cx or Cy (or both) as an axis of symmetry, Ixy=0 and Eqs. (15.29)

reduce to

u′′ = − My
EIyy

, v′′ = − Mx
EIxx

(15.32)

Example 15.5
Determine the deflection curve and the deflection of the free end of the cantilever shown in Fig. 15.16(a);
the flexural rigidity of the cantilever is EI and its section is doubly symmetrical.



15.3 Deflections due to Bending 443

Fig. 15.16

Deflection of a cantilever beam carrying a concentrated load at its free end (Example 15.5).

The load W causes the cantilever to deflect such that its neutral plane takes up the curved
shape shown Fig. 15.16(b); the deflection at any section Z is then v, while that at its free end is vtip. The
axis system is chosen so that the origin coincides with the built-in end where the deflection is clearly
zero.
The bending moment, M, at the section Z is, from Fig. 15.16(a),

M =W(L− z) (i)

Substituting for M in the second of Eq. (15.32)

v′′ = −W
EI

(L− z)

or in more convenient form

EIv′′ = −W(L− z) (ii)

Integrating Eq. (ii) with respect to z gives

EIv′′ = −W
(
Lz− z2

2

)
+C1
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where C1 is a constant of integration which is obtained from the boundary condition that v′ =0 at the
built-in end where z=0. Hence, C1=0 and

EIv′ = −W
(
Lz− z2

2

)
(iii)

Integrating Eq. (iii), we obtain

EIv = −W
(
Lz2

2
− z3

6

)
+C2

in which C2 is again a constant of integration. At the built-in end v=0 when z=0 so that C2=0. Hence,
the equation of the deflection curve of the cantilever is

v= − W

6EI
(3Lz2− z3) (iv)

The deflection, vtip, at the free end is obtained by setting z=L in Eq. (iv). Then

vtip = −WL
3

3EI
(v)

and is clearly negative and downward.

Example 15.6
Determine the deflection curve and the deflection of the free end of the cantilever shown in Fig. 15.17(a).
The cantilever has a doubly symmetrical cross section.

Fig. 15.17

Deflection of a cantilever beam carrying a uniformly distributed load.
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The bending moment, M, at any section Z is given by

M = w

2
(L− z)2 (i)

Substituting for M in the second of Eq. (15.32) and rearranging, we have

EIv′′ = −w
2

(L− z)2 = −w
2

(L2− 2Lz+ z2) (ii)

Integration of Eq. (ii) yields

EIv′ = −w
2

(
L2z− Lz2+ z3

3

)
+C1

When z=0 at the built-in end, v′ =0, so that C1=0 and

EIv′ = −w
2

(
L2z− Lz2+ z3

3

)
(iii)

Integrating Eq. (iii), we have

EIv = −w
2

(
L2
z2

2
− Lz3

3
+ z4

12

)
+C2

and since v=0 when x=0, C2=0. The deflection curve of the beam, therefore, has the equation

v= − w

24EI
(6L2z2− 4Lz3+ z4) (iv)

and the deflection at the free end where x=L is

vtip = −wL
4

8EI
(v)

which is again negative and downward.

Example 15.7
Determine the deflection curve and the midspan deflection of the simply supported beam shown in
Fig. 15.18(a); the beam has a doubly symmetrical cross section.

The support reactions are each wL/2 and the bending moment,M, at any section Z, a distance z from
the left-hand support is

M = −wL
2
z+ wz2

2
(i)
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Fig. 15.18

Deflection of a simply supported beam carrying a uniformly distributed load.

Substituting for M in the second of Eq. (15.32), we obtain

EIv′′ = w

2
(Lz− z2) (ii)

Integrating, we have

EIv′ = w

2

(
Lz2

2
− z3

3

)
+C1

From symmetry it is clear that at the midspan section the gradient v′ =0.
Hence,

0= w

2

(
L3

8
− L3

24

)
+C1

which gives

C1 = −wL
3

24

Therefore,

EIv′ = w

24
(6Lz2− 4z3− L3) (iii)

Integrating again gives

EIv = w

24
(2Lz3− z4− L3z) +C2
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Since v=0 when z=0 (or since v=0 when z=L), it follows that C2=0 and the deflected shape of the
beam has the equation

v= w

24EI
(2Lz3− z4− L3z) (iv)

The maximum deflection occurs at midspan where z=L/2 and is

vmidspan = − 5wL4

384EI
(v)

So far, the constants of integration were determined immediately after they arose. However, in some
cases, a relevant boundary condition, say, a value of gradient, is not obtainable. The method is then to
carry the unknown constant through the succeeding integration and use known values of deflection at
two sections of the beam. Thus, in the previous example, Eq. (ii) is integrated twice to obtain

EIv = w

2

(
Lz3

6
− z4

12

)
+C1z+C2

The relevant boundary conditions are v=0 at z=0 and z=L. The first of these gives C2=0, whereas
from the second, we have C1=−wL3/24. Thus, the equation of the deflected shape of the beam is

v= w

24EI
(2Lz3− z4− L3z)

as before.

Example 15.8
Figure 15.19(a) shows a simply supported beam carrying a concentrated load W at midspan. Deter-
mine the deflection curve of the beam and the maximum deflection if the beam section is doubly
symmetrical.

The support reactions are each W /2 and the bending moment M at a section Z a distance z(≤L/2)
from the left-hand support is

M = −W
2
z (i)

From the second of Eq. (15.32), we have

EIv′′ = W

2
z (ii)

Integrating, we obtain

EIv′ = W

2

z2

2
+C1

From symmetry, the slope of the beam is zero at midspan where z=L/2. Thus, C1=−WL2/16 and

EIv′ = W

16
(4z2− L2) (iii)
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Fig. 15.19

Deflection of a simply supported beam carrying a concentrated load at midspan (Example 15.8).

Integrating Eq. (iii), we have

EIv = W

16

(
4z3

3
− L2z

)
+C2

and when z=0, v=0 so that C2=0. The equation of the deflection curve is therefore

v= W

48EI
(4z3− 3L2z) (iv)

The maximum deflection occurs at midspan and is

vmidspan = −WL
3

48EI
(v)

Note that in this problem, we could not use the boundary condition that v=0 at z=L to determine
C2, since Eq. (i) applies only for 0≤z≤L/2; it follows that Eqs. (iii) and (iv) for slope and deflection
apply only for 0≤z≤L/2, although the deflection curve is clearly symmetrical about midspan.
Examples 15.5 through 15.8 are frequently regarded as “standard” cases of beam deflection.

15.3.1 Singularity Functions
The double integration method used in Examples 15.5 through 15.8 becomes extremely lengthy when
even relatively small complications such as the lack of symmetry due to an offset load are introduced.
For example, the addition of a second concentrated load on a simply supported beam would result
in a total of six equations for slope and deflection, producing six arbitrary constants. Clearly, the
computation involved in determining these constants would be tedious, even though a simply supported
beam carrying two concentrated loads is a comparatively simple practical case. An alternative approach
is to introduce so-called singularity or half-range functions. Such functions were first applied to beam
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Fig. 15.20

Macauley’s method for the deflection of a simply supported beam.

deflection problems by Macauley, in 1919 and hence the method is frequently known as Macauley’s
method.
We now introduce a quantity [z−a] and define it to be zero if (z−a)<0; that is, z<a, and to be

simply (z−a) if z>a. The quantity [z−a] is known as a singularity or half-range function and is
defined to have a value only when the argument is positive, in which case the square brackets behave
in an identical manner to ordinary parentheses.

Example 15.9
Determine the position and magnitude of the maximum upward and downward deflections of the beam
shown in Fig. 15.20.

A consideration of the overall equilibrium of the beam gives the support reactions; thus,

RA = 3

4
W (upward) RF = 3

4
W (downward)

Using the method of singularity functions and taking the origin of axes at the left-hand support, we
write down an expression for the bending moment, M, at any section Z between D and F, the region of
the beam furthest from the origin. Thus,

M = −RAz+W [z− a]+W [z− 2a]− 2W [z− 3a] (i)

Substituting for M in the second of Eq. (15.32), we have

EIv′′ = 3

4
Wz−W [z− a]−W [z− 2a]+ 2W [z− 3a] (ii)

Integrating Eq. (ii) and retaining the square brackets, we obtain

EIv′ = 3

8
Wz2− W

2
[z− a]2− W

2
[z− 2a]2+W [z− 3a]2+C1 (iii)
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and

EIv = 1

8
Wz3− W

6
[z− a]3− W

6
[z− 2a]3+ W

3
[z− 3a]3+C1z+C2 (iv)

in which C1 and C2 are arbitrary constants. When z = 0 (at A), v=0, and hence C2=0. Note that the
second, third, and fourth terms on the right-hand side of Eq. (iv) disappear for z<a. Also, v=0 at
z=4a (F) so that, from Eq. (iv), we have

0= W

8
64a3− W

6
27a3− W

6
8a3+ W

3
a3+ 4aC1

which gives

C1 = −5
8
Wa2

Equations (iii) and (iv) now become

EIv′ = 3

8
Wz2− W

2
[z− a]2− W

2
[z− 2a]2+W [z− 3a]2− 5

8
Wa2 (v)

and

EIv = 1

8
Wz3− W

6
[z− a]3− W

6
[z− 2a]3+ W

3
[z− 3a]3− 5

8
Wa2z, (vi)

respectively.
To determine the maximum upward and downward deflections, we need to know in which bays

v′ =0 and thereby which terms in Eq. (v) disappear when the exact positions are being located. One
method is to select a bay and determine the sign of the slope of the beam at the extremities of the bay.
A change of sign will indicate that the slope is zero within the bay.
By inspection of Fig. 15.20, it seems likely that the maximum downward deflection will occur in

BC. At B, using Eq. (v)

EIv′ = 3

8
Wa2− 5

8
Wa2

which is clearly negative. At C,

EIv′ = 3

8
W4a2− W

2
a2− 5

8
Wa2

which is positive. Therefore, the maximum downward deflection does occur in BC and its exact position
is located by equating v′ to zero for any section in BC. Thus, from Eq. (v)

0= 3

8
Wz2− W

2
[z− a]2− 5

8
Wa2

or, simplifying,

0= z2− 8az+ 9a2 (vii)
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Solution of Eq. (vii) gives

z = 1.35a

so that the maximum downward deflection is, from Eq. (vi),

EIv = 1

8
W(1.35a)3− W

6
(0.35a)3− 5

8
Wa2(1.35a)

that is,

vmax(downward) = −0.54Wa
3

EI

In a similar manner, it can be shown that the maximum upward deflection lies between D and F at
z=3.42a and that its magnitude is

vmax(upward) = 0.04Wa3

EI

An alternative method of determining the position of maximum deflection is to select a possible bay,
set v′ =0 for that bay, and solve the resulting equation in z. If the solution gives a value of z that lies
within the bay, then the selection is correct; otherwise, the procedure must be repeated for a second and
possibly a third and a fourth bay. This method is quicker than the former if the correct bay is selected
initially; if not, the equation corresponding to each selected bay must be completely solved, a procedure
clearly longer than determining the sign of the slope at the extremities of the bay.

Example 15.10
Determine the position and magnitude of the maximum deflection in the beam of Fig. 15.21.

Fig. 15.21

Deflection of a beam carrying a part span uniformly distributed load.
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Following the method of Example 15.9, we determine the support reactions and find the bending
moment, M, at any section Z in the bay furthest from the origin of the axes. Then

M = −RAz+wL
4

[
z− 5L

8

]
(i)

Examining Eq. (i), we see that the singularity function [z−5L/8] does not become zero until z≤5L/8
although Eq. (i) is only valid for z≥3L/4. To obviate this difficulty, we extend the distributed load to
the support D while simultaneously restoring the status quo by applying an upward distributed load of
the same intensity and length as the additional load (Fig. 15.22).
At the section Z, a distance z from A, the bending moment is now given by

M = −RAz+ w

2

[
z− L

2

]2
− w

2

[
z− 3L

4

]2
(ii)

Equation (ii) is now valid for all sections of the beam if the singularity functions are discarded as they
become zero. Substituting Eq. (ii) into the second of Eqs. (15.32), we obtain

EIv′′ = 3

32
wLz− w

2

[
z− L

2

]2
+ w

2

[
z− 3L

4

]2
(iii)

Integrating, Eq. (iii) gives

EIv′ = 3

64
wLz2− w

6

[
z− L

2

]3
+ w

6

[
z− 3L

4

]3
+C1 (iv)

EIv = wLz3

64
− w

24

[
z− L

2

]4
+ w

24

[
z− 3L

4

]4
+C1z+C2, (v)

where C1 and C2 are arbitrary constants. The required boundary conditions are v=0 when z=0 and
z=L. From the first of these we obtain C2=0, while the second gives

0= wL4

64
− w

24

(
L

2

)4
+ w

24

(
L

4

)4
+C1L

Fig. 15.22

Method of solution for a part span uniformly distributed load.
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from which

C1 = −27wL
3

2048

Equations (iv) and (v) then become

EIv′ = 3

64
wLz2− w

6

[
z− L

2

]3
+ w

6

[
z− 3L

4

]3
− 27wL3

2048
(vi)

and

EIv = wLz3

64
− w

24

[
z− L

2

]4
+ w

24

[
z− 3L

4

]4
− 27wL3

2048
z (vii)

In this problem, the maximum deflection clearly occurs in the region BC of the beam. Thus, equating
the slope to zero for BC, we have

0= 3

64
wLz2− w

6

[
z− L

2

]3
− 27wL3

2048

which simplifies to

z3− 1.78Lz2+ 0.75zL2− 0.046L3 = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at z�0.6L. Hence from Eq. (vii), the
maximum deflection is

vmax = −4.53× 10−3wL4
EI

Example 15.11
Determine the deflected shape of the beam shown in Fig. 15.23.

Fig. 15.23

Deflection of a simply supported beam carrying a point moment.
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In this problem, an external momentM0 is applied to the beam at B. The support reactions are found
in the normal way and are

RA = −M0
L

(downward) RC = M0
L

(upward)

The bending moment at any section Z between B and C is then given by

M = −RAz−M0 (i)

Equation (i) is valid only for the region BC and clearly does not contain a singularity function which
would cause M0 to vanish for z≤b. We overcome this difficulty by writing

M = −RAz−M0[z− b]0 (Note: [z− b]0 = 1) (ii)

Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the beam,
since [z−b]0 disappears when z≤b. Substituting for M from Eq. (ii) in the second of Eq. (15.32),
we obtain

EIv′′ = RAz+M0[z− b]0 (iii)

Integration of Eq. (iii) yields

EIv′ = RA z
2

2
+M0[z− b]+C1 (iv)

and

EIv = RA z
3

6
+ M0
2
[z− b]2+C1z+C2, (v)

where C1 and C2 are arbitrary constants. The boundary conditions are v=0 when z=0 and z=L. From
the first of these we have C2=0, while the second gives

0= −M0
L

L3

6
+ M0
2
[L− b]2+C1L

from which

C1 = −M0
6L

(2L2− 6Lb+ 3b2)

The equation of the deflection curve of the beam is then

v= M0
6EIL

{z3+ 3L[z− b]2− (2L2− 6Lb+ 3b2)z} (vi)
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Fig. 15.24

Determination of the deflection of a cantilever.

Example 15.12
Determine the horizontal and vertical components of the tip deflection of the cantilever shown in
Fig. 15.24. The second moments of area of its unsymmetrical section are Ixx , Iyy, and Ixy.

From Eqs. (15.29)

u′′ = MxIxy−MyIxx
E(IxxIyy− I2xy)

(i)

In this case, Mx=W(L−z), My=0 so that Eq. (i) simplifies to

u′′ = WIxy
E(IxxIyy− I2xy)

(L− z) (ii)

Integrating Eq. (ii) with respect to z,

u′ = WIxy
E(IxxIyy− I2xy)

(
Lz− z2

2
+A

)
(iii)

and

u= WIxy
E(IxxIyy− I2xy)

(
L
z2

2
− z3

6
+Az+B

)
(iv)

in which u′ denotes du/dz and the constants of integration A and B are found from the boundary
conditions; that is, u′ =0 and u=0 when z=0. From the first of these and Eq. (iii), A=0, while from
the second and Eq. (iv), B=0. Hence, the deflected shape of the beam in the xz plane is given by

u= WIxy
E(IxxIyy− I2xy)

(
L
z2

2
− z3

6

)
(v)
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At the free end of the cantilever (z=L), the horizontal component of deflection is

uf.e. = WIxyL3

3E(IxxIyy− I2xy)
(vi)

Similarly, the vertical component of the deflection at the free end of the cantilever is

vf.e. = −WIyyL3
3E(IxxIyy− I2xy)

(vii)

The actual deflection δf.e. at the free end is then given by

δf.e. = (u2f.e.+ v2f.e.)
1
2

at an angle of tan−1 uf.e./vf.e. to the vertical.
Note that if either Cx or Cy were an axis of symmetry, Ixy=0 and Eqs. (vi) and (vii) reduce to

uf.e. = 0 vf.e. = −WL3
3EIxx

the well-known results for the bending of a cantilever having a symmetrical cross section and carrying
a concentrated vertical load at its free end (see Example 15.5).

15.4 CALCULATION OF SECTION PROPERTIES
It will be helpful at this stage to discuss the calculation of the various section properties required in the
analysis of beams subjected to bending. Initially, however, two useful theorems are quoted.

15.4.1 Parallel Axes Theorem
Consider the beam section shown in Fig. 15.25 and suppose that the second moment of area, IC, about
an axis through its centroid C is known. The second moment of area, IN, about a parallel axis, NN, a
distance b from the centroidal axis is then given by

IN = IC+Ab2 (15.33)

Fig. 15.25

Parallel axes theorem.
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15.4.2 Theorem of Perpendicular Axes
In Fig. 15.26, the second moments of area, Ixx and Iyy, of the section about Ox and Oy are known. The
second moment of area about an axis through O perpendicular to the plane of the section (i.e., a polar
second moment of area) is then

Io = Ixx + Iyy (15.34)

15.4.3 Second Moments of Area of Standard Sections
Many sections may be regarded as comprising a number of rectangular shapes. The problem of deter-
mining the properties of such sections is simplified if the second moments of area of the rectangular
components are known and use is made of the parallel axes theorem. Thus, for the rectangular section
of Fig. 15.27.

Ixx =
∫
A

y2dA=
d/2∫

−d/2
by2dy= b

[
y3

3

]d/2
−d/2

Fig. 15.26

Theorem of perpendicular axes.

Fig. 15.27

Second moments of area of a rectangular section.
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which gives

Ixx = bd3

12
(15.35)

Similarly,

Iyy = db3

12
(15.36)

Frequently, it is useful to know the second moment of area of a rectangular section about an axis which
coincides with one of its edges. Thus, in Fig. 15.27 and using the parallel axes theorem

IN = bd3

12
+ bd

(
−d
2

)2
= bd3

3
(15.37)

Example 15.13
Determine the second moments of area Ixx and Iyy of the I-section shown in Fig. 15.28.

Using Eq. (15.35),

Ixx = bd3

12
− (b− tw)d3w

12

Alternatively, using the parallel axes theorem in conjunction with Eq. (15.35)

Ixx = 2
[
bt3f
12

+ btf
(
dw+tf
2

)2]
+ twd3w
12

Fig. 15.28

Second moments of area of an I-section.



15.4 Calculation of Section Properties 459

Fig. 15.29

Second moments of area of a circular section.

The equivalence of these two expressions for Ixx is most easily demonstrated by a numerical example.
Also, from Eq. (15.36),

Iyy = 2 tfb
3

12
+ dwt3w
12

It is also useful to determine the second moment of area, about a diameter, of a circular section. In
Fig. 15.29, where the x and y axes pass through the centroid of the section,

Ixx =
∫
A

y2dA=
d/2∫

−d/2
2

(
d

2
cosθ

)
y2dy (15.38)

Integration of Eq. (15.38) is simplified if an angular variable, θ , is used. Thus,

Ixx =
π/2∫

−π/2

d cosθ

(
d

2
sinθ

)2 d
2
cosθ dθ

that is,

Ixx = d4

8

π/2∫
−π/2

cos2 θ sin2 θ dθ
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which gives

Ixx = πd4

64
(15.39)

Clearly from symmetry

Iyy = πd4

64
(15.40)

Using the theorem of perpendicular axes, the polar second moment of area, Io, is given by

Io = Ixx + Iyy = πd4

32
(15.41)

15.4.4 Product Second Moment of Area
The product second moment of area, Ixy, of a beam section with respect to x and y axes is defined by

Ixy =
∫
A

xydA (15.42)

Thus, each element of area in the cross section is multiplied by the product of its coordinates, and the
integration is taken over the complete area. Although second moments of area are always positive, since
elements of area are multiplied by the square of one of their coordinates, it is possible for Ixy to be
negative if the section lies predominantly in the second and fourth quadrants of the axes system. Such
a situation would arise in the case of the Z-section of Fig. 15.30(a) where the product second moment
of area of each flange is clearly negative.
A special case arises when one (or both) of the coordinate axes is an axis of symmetry so that for

any element of area, δA, having the product of its coordinates positive, there is an identical element for
which the product of its coordinates is negative (Fig. 15.30(b)). Summation (i.e., integration) over the

Fig. 15.30

Product second moment of area.



15.4 Calculation of Section Properties 461

entire section of the product second moment of area of all such pairs of elements results in a zero value
for Ixy.
We have shown previously that the parallel axes theorem may be used to calculate second moments

of area of beam sections comprising geometrically simple components. The theorem can be extended to
the calculation of product second moments of area. Let us suppose that we wish to calculate the product
second moment of area, Ixy, of the section shown in Fig. 15.30(c) about axes xy when IXY about its own,
say, centroidal, axes system CXY is known. From Eq. (15.42),

Ixy =
∫
A

xydA

or

Ixy =
∫
A

(X − a)(Y − b)dA

which, on expanding, gives

Ixy =
∫
A

XY dA− b
∫
A

XdA− a
∫
A

Y dA+ ab
∫
A

dA

If X and Y are centroidal axes, then
∫
AX dA= ∫

A Y dA=0. Hence,
Ixy = IXY + abA (15.43)

It can be seen from Eq. (15.43) that if either CX or CY is an axis of symmetry; that is, IXY =0, then
Ixy = abA (15.44)

Therefore, for a section component having an axis of symmetry that is parallel to either of the
section reference axes, the product second moment of area is the product of the coordinates of its
centroid multiplied by its area.

15.4.5 Approximations for Thin-Walled Sections
We may exploit the thin-walled nature of aircraft structures to make simplifying assumptions in the
determination of stresses and deflections produced by bending. Thus, the thickness t of thin-walled
sections is assumed to be small compared with their cross-sectional dimensions so that stresses may
be regarded as being constant across the thickness. Furthermore, we neglect squares and higher powers
of t in the computation of sectional properties and take the section to be represented by the midline
of its wall. As an illustration of the procedure, we shall consider the channel section of Fig. 15.31(a).
The section is singly symmetric about the x axis so that Ixy=0. The second moment of area Ixx is then
given by

Ixx = 2
[
(b+ t/2)t3

12
+
(
b+ t

2

)
th2
]

+ t [2(h− t/2)]3
12
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Fig. 15.31

(a) Actual thin-walled channel section; (b) approximate representation of section.

Fig. 15.32

Second moments of area of an inclined thin section.

Expanding the cubed term, we have

Ixx = 2
[
(b+ t/2)t3

12
+
(
b+ t

2

)
th2
]

+ t

12

[
(2)3

(
h3− 3h2 t

2
+ 3h t

2

4
− t3

8

)]

which reduces, after powers of t2 and upward are ignored, to

Ixx = 2bth2+ t (2h)
3

12

The second moment of area of the section about Cy is obtained in a similar manner.
We see, therefore, that for the purpose of calculating section properties, we may regard the section

as being represented by a single line, as shown in Fig. 15.31(b).
Thin-walled sections frequently have inclined or curved walls which complicate the calculation of

section properties. Consider the inclined thin section of Fig. 15.32. Its second moment of area about
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a horizontal axis through its centroid is given by

Ixx = 2
a/2∫
0

ty2 ds= 2
a/2∫
0

t(s sinβ)2 ds

from which

Ixx = a3t sin2β

12

Similarly,

Iyy = a3t cos2β

12

The product second moment of area is

Ixy = 2
a/2∫
0

txyds

= 2
a/2∫
0

t(scosβ)(s sinβ)ds

which gives

Ixy = a3t sin2β

24

We note here that these expressions are approximate in that their derivation neglects powers of t2

and upward by ignoring the second moments of area of the element δs about axes through its own
centroid.
Properties of thin-walled curved sections are found in a similar manner. Thus, Ixx for the semicircular

section of Fig. 15.33 is

Ixx =
πr∫
0

ty2 ds

Expressing y and s in terms of a single variable θ simplifies the integration, so

Ixx =
π∫
0

t(r cosθ)2r dθ
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Fig. 15.33

Second moment of area of a semicircular section.

from which

Ixx = πr3t

2

Example 15.14
Determine the direct stress distribution in the thin-walled Z-section, shown in Fig. 15.34, produced by
a positive bending moment Mx .

The section is antisymmetrical with its centroid at the midpoint of the vertical web. There-
fore, the direct stress distribution is given by either of Eq. (15.18) or (15.19) in which My = 0.

Fig. 15.34

Z-section beam for Example 15.14.
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From Eq. (15.19),

σz = Mx(Iyyy− Ixyx)
IxxIyy− I2xy

(i)

The section properties are calculated as follows

Ixx = 2ht
2

(
h

2

)2
+ th3

12
= h3t

3

Iyy = 2 t
3

(
h

2

)3
= h3t

12

Ixy = ht

2

(
h

4

)(
h

2

)
+ ht

2

(
−h
4

)(
−h
2

)
= h3t

8

Substituting these values in Eq. (i)

σz = Mx
h3t

(6.86y− 10.30x) (ii)

On the top flange y=h/2, 0≤ x ≤ h/2, and the distribution of direct stress is given by

σz = Mx
h3t

(3.43h− 10.30x) (iii)

which is linear. Hence,

σz,1 = −1.72Mx
h3t

(compressive)

σz,2 = +3.43Mx
h3t

(tensile)

In the web, h/2≤ y ≤ −h/2 and x =0. Again the distribution is of linear form and is given by the
equation

σz = Mx
h3t
6.86y

from which

σz,2 = +3.43Mx
h3t

(tensile)

and

σz,3 = −3.43Mx
h3t

(compressive)
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Fig. 15.35

Distribution of direct stress in Z-section beam of Example 15.14.

The distribution in the lower flange may be deduced from antisymmetry; the complete distribution is
then as shown in Fig. 15.35.

15.5 APPLICABILITY OF BENDING THEORY
The expressions for direct stress and displacement derived in the above theory are based on the assump-
tions that the beam is of uniform, homogeneous cross section and that plane sections remain plane after
bending. The latter assumption is strictly true only if the bending moments Mx and My are constant
along the beam. Variation of bendingmoment implies the presence of shear loads, and the effect of these
is to deform the beam section into a shallow, inverted “s” (see Section 2.6). However, shear stresses in
beams whose cross-sectional dimensions are small in relation to their lengths are comparatively low so
that the basic theory of bending may be used with reasonable accuracy.
In thin-walled sections, shear stresses produced by shear loads are not small and must be calculated,

although the direct stresses may still be obtained from the basic theory of bending so long as axial
constraint stresses are absent. Deflections in thin-walled structures are assumed to result primarily from
bending strains; the contribution of shear strains may be calculated separately if required.

15.6 TEMPERATURE EFFECTS
In Section 1.15.1, we considered the effect of temperature change on stress–strain relationships, whereas
in Section 5.11, we examined the effect of a simple temperature gradient on a cantilever beam of
rectangular cross section using an energy approach. However, as we have seen, beam sections in aircraft
structures are generally thin walled and do not necessarily have axes of symmetry. We shall now
investigate how the effects of temperature on such sections may be determined.
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Fig. 15.36

Beam section subjected to a temperature rise.

We have seen that the strain produced by a temperature change �T is given by

ε = α�T (see Eq. (1.55))

It follows from Eq. (1.40) that the direct stress on an element of cross-sectional area δA is

σ = Eα�T δA (15.45)

Consider now the beam section shown in Fig. 15.36 and suppose that a temperature variation �T is
applied to the complete cross section; that is, �T is a function of both x and y.
The total normal force due to the temperature change on the beam cross section is then given by

NT =
∫ ∫
A

Eα�T dA (15.46)

Further, the moments about the x and y axes are

MxT =
∫ ∫
A

Eα�TydA (15.47)

and

MyT =
∫ ∫
A

Eα�TxdA, (15.48)

respectively.
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We have noted that beam sections in aircraft structures are generally thin walled so that
Eqs. (15.46) through (15.48) may be more easily integrated for such sections by dividing them into
thin rectangular components as we did when calculating section properties. We then use the Riemann
integration technique in which we calculate the contribution of each component to the normal force
and moments and sum them to determine each resultant. Equations (15.46), (15.47), and (15.48) then
become

NT = �Eα�T Ai (15.49)

MxT = �Eα�Tȳi Ai (15.50)

MyT = �Eα�Tx̄i Ai (15.51)

in which Ai is the cross-sectional area of a component and xi and yi are the coordinates of its
centroid.

Example 15.15
The beam section shown in Fig. 15.37 is subjected to a temperature rise of 2T0 in its upper flange,
a temperature rise of T0 in its web, and zero temperature change in its lower flange. Determine the
normal force on the beam section and the moments about the centroidal x and y axes. The beam
section has a Young’s modulus E and the coefficient of linear expansion of the material of the
beam is α.

From Eq. (15.49),

NT = Eα(2T0 at+ T0 2at) = 4Eα at T0

From Eq. (15.50),

MxT = Eα[2T0 at(a) + T0 2at(0)]= 2Eα a2t T0

and from Eq. (15.51),

MyT = Eα[2T0 at(−a/2) + T0 2at(0)]= −Eα a2t T0

Note that MyT is negative, which means that the upper flange would tend to rotate out of the paper
about thewebwhich agreeswith a temperature rise for this part of the section. The stresses corresponding
to the above stress resultants are calculated in the normal way and are added to those produced by any
applied loads.
In some cases, the temperature change is not conveniently constant in the components of a beam

section and must then be expressed as a function of x and y. Consider the thin-walled beam section
shown in Fig. 15.38 and suppose that a temperature change �T (x,y) is applied.
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Fig. 15.37

Beam section of Example 15.15.

Fig. 15.38

Thin-walled beam section subjected to a varying temperature change.
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The direct stress on an element δs in the wall of the section is then, from Eq. (15.45),

σ = Eα�T(x,y)t δs

Equations (15.46) through (15.48) then become

NT =
∫
A

Eα�T(x,y)t ds (15.52)

MxT =
∫
A

Eα�T(x,y)tyds (15.53)

MyT =
∫
A

Eα�T(x,y)txds (15.54)

Example 15.16
If, in the beam section of Example 15.15, the temperature change in the upper flange is 2T0 but in
the web varies linearly from 2T0 at its junction with the upper flange to zero at its junction with the
lower flange determine the values of the stress resultants; the temperature change in the lower flange
remains zero.

The temperature change at any point in the web is given by

Tw = 2T0(a+ y)/2a= T0
a

(a+ y)

Then, from Eqs. (15.49) and (15.52),

NT = Eα 2T0 at+
a∫

−a
Eα
T0
a

(a+ y)t ds

that is, NT = EαT0

{
2at+ 1

a

[
ay+ y2

2

]a
−a

}

which gives

NT = 4EαT0 at

Note that, in this case, the answer is identical to that in Example 15.15, which is to be expected, since the
average temperature change in the web is (2T0+0)/2=T0, which is equal to the constant temperature
change in the web in Example 15.15.
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From Eqs. (15.50) and (15.53),

MxT = Eα 2T0at(a) +
a∫

−a
Eα
T0
a

(a+ y)yt ds

that is,

MxT = EαT0

{
2a2t+ 1

a

[
ay2

2
+ y3

3

]a
−a

}

from which

MxT = 8Eαa2tT0
3

Alternatively, the average temperature change T0 in the web may be considered to act at the centroid of
the temperature change distribution. Then,

MxT = Eα 2T0at(a) +EαT02at
(a
3

)
that is,

MxT = 8Eαa2tT0
3

as before

The contribution of the temperature change in the web to MyT remains zero, since the section centroid
is in the web; the value of MyT is therefore −Eαa2tT0 as in Example 15.14.

Reference
[1] Megson, T.H.G., Structures and Stress Analysis, 2nd edition, Elsevier, 2005.

Problems
P.15.1 Figure P.15.1 shows the section of an angle purlin. A bending moment of 3000Nm is applied to the purlin
in a plane at an angle of 30◦ to the vertical y axis. If the sense of the bending moment is such that its components
Mx and My both produce tension in the positive xy quadrant, calculate the maximum direct stress in the purlin,
stating clearly the point at which it acts.

Ans. σz,max = −63.3N/mm2 at C.
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Fig. P.15.1

P.15.2 A thin-walled, cantilever beam of unsymmetrical cross section supports shear loads at its free end as shown
in Fig. P.15.2. Calculate the value of direct stress at the extremity of the lower flange (point A) at a section halfway
along the beam if the position of the shear loads is such that no twisting of the beam occurs.

Ans. 194.7N/mm2 (tension).

Fig. P.15.2

P.15.3 A beam, simply supported at each end, has a thin-walled cross section shown in Fig. P.15.3. If a uniformly
distributed loading of intensity w/unit length acts on the beam in the plane of the lower, horizontal flange, calculate
the maximum direct stress due to bending of the beam and show diagrammatically the distribution of the stress at
the section where the maximum occurs.

The thickness t is to be taken as small in comparison with the other cross-sectional dimensions in calculating
the section properties Ixx , Iyy, and Ixy.

Ans. σz,max=σz,3=13wl2/384a2t, σz,1=wl2/96a2t, σz,2=−wl2/48a2t.
P.15.4 A thin-walled cantilever with walls of constant thickness t has the cross section shown in Fig. P.15.4. It is
loaded by a vertical force W at the tip and a horizontal force 2W at the midsection, both forces acting through the
shear center. Determine and sketch the distribution of direct stress, according to the basic theory of bending, along
the length of the beam for the points 1 and 2 of the cross section.
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Fig. P.15.3

The wall thickness t can be taken as very small in comparison with d in calculating the sectional properties Ixx ,
Ixy, and so on.

Ans. σz,1 (midpoint)=−0.05Wl/td2, σz,1 (built-in end)=−1.85Wl/td2
σz,2 (midpoint)=−0.63Wl/td2, σz,2 (built-in end)=0.1Wl/td2.

Fig. P.15.4

P.15.5 A thin-walled beam has the cross section shown in Fig. P.15.5. If the beam is subjected to a bendingmoment
Mx in the plane of the web 23, calculate and sketch the distribution of direct stress in the beam cross section.

Ans. At 1, 0.92Mx/th2; At 2, −0.65Mx/th2; At 3, 0.65Mx/th2;
At 4, −0.135Mx/th2

P.15.6 The thin-walled beam section shown in Fig. P.15.6 is subjected to a bending moment Mx applied in a
negative sense. Find the position of the neutral axis and the maximum direct stress in the section.

Ans. NA inclined at 40.9◦ to Cx. ±0.74 Mx/ta2 at 1 and 2, respectively.
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Fig. P.15.5 Fig. P.15.6

P.15.7 A thin-walled cantilever has a constant cross section of uniform thickness with the dimensions shown in
Fig. P.15.7. It is subjected to a system of point loads acting in the planes of the walls of the section in the directions
shown.

Calculate the direct stresses according to the basic theory of bending at the points 1, 2, and 3 of the cross section
at the built-in end and halfway along the beam. Illustrate your answer by means of a suitable sketch.

The thickness is to be taken as small in comparison with the other cross-sectional dimensions in calculating
the section properties Ixx , Ixy, and so on.

Ans. At built-in end, σz,1=−11.4N/mm2, σz,2=−18.9N/mm2, σz,3=39.1N/mm2
Halfway, σz,1=−20.3N/mm2, σz,2=−1.1N/mm2, σz,3=15.4N/mm2.

Fig. P.15.7

P.15.8 Auniform thin-walled beamhas the open cross section shown in Fig. P.15.8. Thewall thickness t is constant.
Calculate the position of the neutral axis and the maximum direct stress for a bendingmomentMx=3.5Nm applied
about the horizontal axis Cx. Take r=5mm, t=0.64mm.
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Ans. α=51.9◦, σz,max=101N/mm2.

Fig. P.15.8

P.15.9 A uniform beam is simply supported over a span of 6m. It carries a trapezoidally distributed load with
intensity varying from 30kN/m at the left-hand support to 90kN/m at the right-hand support. Find the equation of
the deflection curve and hence the deflection at the midspan point. The second moment of area of the cross section
of the beam is 120×106 mm4 and Young’s modulus E=206000N/mm2.
Ans. 41mm (downward).

P.15.10 A cantilever of length L and having a flexural rigidity EI carries a distributed load that varies in intensity
from w/unit length at the built-in end to zero at the free end. Find the deflection of the free end.

Ans. wL4/30EI (downward).

P.15.11 Determine the position and magnitude of the maximum deflection of the simply supported beam shown in
Fig. P.15.11 in terms of its flexural rigidity EI.

Ans. 38.8/EI m downward at 2.9m from left-hand support.

Fig. P.15.11

P.15.12 Determine the equation of the deflection curve of the beam shown in Fig. P.15.12. The flexural rigidity of
the beam is EI.
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Ans. v=− 1

EI

(
125

6
z3− 50[z− 1]2+ 50

12
[z− 2]4− 50

12
[z− 4]4− 525

6
[z− 4]3 +237.5z

)

Fig. P.15.12

P.15.13 A uniform thin-walled beam ABD of open cross section (Fig. P.15.13) is simply supported at points B and
D with its web vertical. It carries a downward vertical force W at the end A in the plane of the web.

Derive expressions for the vertical and horizontal components of the deflection of the beam midway between
the supports B and D. The wall thickness t and Young’s modulus E are constant throughout.

Ans. u=0.186Wl3/Ea3t, v=0.177Wl3/Ea3t.

Fig. P.15.13

P.15.14 Auniform cantilever of arbitrary cross section and length l has section properties Ixx , Iyy, and Ixy with respect
to the centroidal axes shown in Fig. P.15.14. It is loaded in the vertical (yz) plane with a uniformly distributed load
of intensity w/unit length. The tip of the beam is hinged to a horizontal link which constrains it to move in the
vertical direction only (provided that the actual deflections are small). Assuming that the link is rigid and that there
are no twisting effects, calculate:

(a) the force in the link;
(b) the deflection of the tip of the beam.
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Ans. (a) 3wlIxy/8Ixx; (b) wl4/8EIxx .

Fig. P.15.14

P.15.15 A uniform beam of arbitrary, unsymmetrical cross section and length 2l is built-in at one end and simply
supported in the vertical direction at a point half way along its length. This support, however, allows the beam to
deflect freely in the horizontal x direction (Fig. P.15.15).

For a vertical load W applied at the free end of the beam, calculate and draw the bending moment diagram,
putting in the principal values.

Ans. MC=0, MB=Wl, MA=−Wl/2. Linear distribution.

Fig. P.15.15

P.15.16 The beam section of P.15.4 is subjected to a temperature rise of 4T0 in its upper flange 12, a temperature
rise of 2T0 in both vertical webs, and a temperature rise of T0 in its lower flange 34. Determine the changes in axial
force and in the bending moments about the x and y axes. Young’s modulus for the material of the beam is E, and
its coefficient of linear expansion is α.

Ans. NT =9Eα dtT0, MxT =3Eα d2t T0/2, MyT =3Eα d2t T0/4.
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P.15.17 The beam section shown in Fig. P.15.17 is subjected to a temperature change which varies with y such that
T=T0y/2a. Determine the corresponding changes in the stress resultants. Young’s modulus for the material of the
beam is E, while its coefficient of linear expansion is α.

Ans. NT =0, MxT =5Eα a2t T0/3, MyT =Eα a2t T0/6.

Fig. P.15.17



CHAPTER

16Shear of Beams

In Chapter 15, we developed the theory for the bending of beams by considering solid or thick beam
sections and then extended the theory to the thin-walled beam sections typical of aircraft structural
components. In fact, it is only in the calculation of section properties that thin-walled sections subjected
to bending are distinguished from solid and thick sections. However, for thin-walled beams subjected
to shear, the theory is based on assumptions applicable only to thin-walled sections, so we shall not
consider solid and thick sections; the relevant theory for such sections may be found in any text on
structural and stress analysis [Ref. 1]. The relationships between bending moments, shear forces, and
load intensities derived in Section 15.2.5 still apply.

16.1 GENERAL STRESS, STRAIN, AND DISPLACEMENT
RELATIONSHIPS FOR OPEN AND SINGLE CELL
CLOSED SECTION THIN-WALLED BEAMS

In this section, we shall establish the equations of equilibrium and expressions for strain which are
necessary for the analysis of open section beams supporting shear loads and closed section beams
carrying shear and torsional loads. The analysis of open section beams subjected to torsion requires
a different approach and is discussed separately in Chapter 17. The relationships are established from
first principles for the particular case of thin-walled sections in preference to the adaption of Eqs. (1.6),
(1.27), and (1.28), which refer to different coordinate axes; the form, however, will be seen to be the
same. Generally, in the analysis we assume that axial constraint effects are negligible that the shear
stresses normal to the beam surface may be neglected, since they are zero at each surface and the wall
is thin, that direct and shear stresses on planes normal to the beam surface are constant across the
thickness, and finally that the beam is of uniform section so that the thickness may vary with distance
around each section but is constant along the beam. In addition, we ignore squares and higher powers
of the thickness t in the calculation of section properties (see Section 15.4.5).
The parameter s in the analysis is distance measured around the cross section from some convenient

origin. An element δs×δz× t of the beam wall is maintained in equilibrium by a system of direct and
shear stresses as shown in Fig. 16.1(a). The direct stress σz is produced by bending moments or by the
bending action of shear loads, whereas the shear stresses are due to shear and/or torsion of a closed
section beam or shear of an open section beam. The hoop stress σs is usually zero but may be caused,

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00016-6 479
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Fig. 16.1

(a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow system
on the element.

in closed section beams, by internal pressure. Although we have specified that t may vary with s, this
variation is small for most thin-walled structures so that we may reasonably make the approximation
that t is constant over the length δs. Also, from Eq. (1.4), we deduce that τzs=τsz=τ , say. However,
we shall find it convenient to work in terms of shear flow q—that is, shear force per unit length rather
than in terms of shear stress. Hence, in Fig. 16.1(b),

q = τ t (16.1)

and is regarded as being positive in the direction of increasing s.
For equilibrium of the element in the z direction and neglecting body forces (see Section 1.2)(

σz + ∂σz

∂z
δz

)
tδs− σztδs+

(
q+ ∂q

∂s
δs

)
δz − qδz = 0

which reduces to

∂q

∂s
+ t ∂σz

∂z
= 0 (16.2)

Similarly, for equilibrium in the s direction

∂q

∂z
+ t ∂σs

∂s
= 0 (16.3)

The direct stresses σz and σs produce direct strains εz and εs, while the shear stress τ induces a shear
strain γ (=γzs=γsz). We shall now proceed to express these strains in terms of the three components of
the displacement of a point in the section wall (see Fig. 16.2). Of these components, vt is a tangential
displacement in the xy plane and is taken to be positive in the direction of increasing s; vn is a normal
displacement in the xy plane and is positive outward; and w is an axial displacement which has been
defined previously in Section 15.2.1. Immediately, from the third of Eqs. (1.18), we have

εz = ∂w

∂z
(16.4)
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Fig. 16.2

Axial, tangential, and normal components of displacement of a point in the beam wall.

Fig. 16.3

Determination of shear strain γ in terms of tangential and axial components of displacement.

It is possible to derive a simple expression for the direct strain εs in terms of vt , vn, s, and the curvature
1/r in the xy plane of the beam wall. However, as we do not require εs in the subsequent analysis, we
shall, for brevity, merely quote the expression

εs = ∂vt
∂s

+ vn
r

(16.5)

The shear strain γ is found in terms of the displacements w and vt by considering the shear distortion
of an element δs×δz of the beam wall. From Fig. 16.3, we see that the shear strain is given by

γ = φ1+ φ2

or, in the limit as both δs and δz tend to zero

γ = ∂w

∂s
+ ∂vt

∂z
(16.6)
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In addition to the assumptions specified in the earlier part of this section, we further assume that during
any displacement, the shape of the beam cross section is maintained by a system of closely spaced
diaphragms which are rigid in their own plane but are perfectly flexible normal to their own plane
(CSRD assumption). There is, therefore, no resistance to axial displacement w, and the cross section
moves as a rigid body in its own plane, the displacement of any point being completely specified by
translations u and v and a rotation θ (see Fig. 16.4).
At first sight this appears to be a rather sweeping assumption, but for aircraft structures of the thin

shell type described in Chapter 11 whose cross sections are stiffened by ribs or frames positioned at
frequent intervals along their lengths, it is a reasonable approximation for the actual behavior of such
sections. The tangential displacement vt of any point N in the wall of either an open or closed section
beam is seen from Fig. 16.4 to be

vt = pθ + ucosψ + v sinψ (16.7)

where clearly u, v, and θ are functions of z only (w may be a function of z and s).
The origin O of the axes in Fig. 16.4 has been chosen arbitrarily, and the axes suffer displacements

u, v, and θ . These displacements, in a loading case such as pure torsion, are equivalent to a pure rotation
about some point R(xR,yR) in the cross section where R is the center of twist. Therefore, in Fig. 16.4,

vt = pRθ (16.8)

and

pR = p− xR sinψ + yR cosψ
which gives

vt = pθ − xRθ sinψ + yRθ cosψ

Fig. 16.4

Establishment of displacement relationships and position of center of twist of beam (open or closed).
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and

∂vt
∂z

= pdθ
dz

− xR sinψ
dθ

dz
+ yR cosψ dθ

dz
(16.9)

Also from Eq. (16.7)

∂vt
∂z

= pdθ
dz

+ du

dz
cosψ + dv

dz
sinψ (16.10)

Comparing the coefficients of Eqs. (16.9) and (16.10), we see that

xR = − dv/dz
dθ/dz

yR = du/dz

dθ/dz
(16.11)

16.2 SHEAR OF OPEN SECTION BEAMS
The open section beam of arbitrary section shown in Fig. 16.5 supports shear loads Sx and Sy such that
there is no twisting of the beam cross section. For this condition to be valid, the shear loads must both
pass through a particular point in the cross section known as the shear center.
Since there are no hoop stresses in the beam, the shear flows and direct stresses acting on an element

of the beam wall are related by Eq. (16.2)—that is,

∂q

∂s
+ t ∂σz

∂z
= 0

We assume that the direct stresses are obtained with sufficient accuracy from basic bending theory so
that from Eq. (15.18)

∂σz

∂z
= [(∂My/∂z)Ixx − (∂Mx/∂z)Ixy]

IxxIyy− I2xy
x+ [(∂Mx/∂z)Iyy− (∂My/∂z)Ixy]

IxxIyy− I2xy
y

Fig. 16.5

Shear loading of open section beam.
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Using the relationships of Eqs. (15.23) and (15.24)—that is, ∂My/∂z=Sx, and so on—this expression
becomes

∂σz

∂z
= (SxIxx − SyIxy)

IxxIyy− I2xy
x+ (SyIyy− SxIxy)

IxxIyy− I2xy
y

Substituting for ∂σz/∂z in Eq. (16.2) gives

∂q

∂s
= − (SxIxx − SyIxy)

IxxIyy− I2xy
tx− (SyIyy− SxIxy)

IxxIyy− I2xy
ty (16.12)

Integrating Eq. (16.12) with respect to s from some origin for s to any point around the cross section,
we obtain

s∫
0

∂q

∂s
ds= −

(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tyds (16.13)

If the origin for s is taken at the open edge of the cross section, then q=0 when s=0, and Eq. (16.13)
becomes

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tyds (16.14)

For a section having either Cx or Cy as an axis of symmetry Ixy=0 and Eq. (16.14) reduces to

qs = − Sx
Iyy

s∫
0

txds− Sy
Ixx

s∫
0

tyds

Example 16.1
Determine the shear flow distribution in the thin-walled Z-section shown in Fig. 16.6 due to a shear
load Sy applied through the shear center of the section.

The origin for our system of reference axes coincides with the centroid of the section at the midpoint
of the web. From antisymmetry, we also deduce by inspection that the shear center occupies the same
position. Since Sy is applied through the shear center, no torsion exists and the shear flow distribution
is given by Eq. (16.14) in which Sx=0; that is,

qs = SyIxy
IxxIyy− I2xy

s∫
0

txds− SyIyy
IxxIyy− I2xy

s∫
0

tyds

or

qs = Sy
IxxIyy− I2xy

⎛
⎝Ixy

s∫
0

txds− Iyy
s∫
0

tyds

⎞
⎠ (i)
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Fig. 16.6

Shear loaded Z-section of Example 16.1.

The second moments of area of the section have previously been determined in Example 15.14 and are

Ixx = h3t

3
, Iyy = h3t

12
, Ixy = h3t

8
Substituting these values in Eq. (i), we obtain

qs = Sy
h3

s∫
0

(10.32x− 6.84y)ds (ii)

On the bottom flange 12, y=−h/2 and x=−h/2+s1, where 0≤s1≤h/2. Therefore,

q12 = Sy
h3

s1∫
0

(10.32s1− 1.74h)ds1

giving

q12 = Sy
h3
(
5.16s21− 1.74hs1

)
(iii)

Hence at 1 (s1=0), q1=0, and at 2 (s1=h/2), q2=0.42Sy/h. Further examination of Eq. (iii) shows
that the shear flow distribution on the bottom flange is parabolic with a change of sign (i.e., direction)
at s1=0.336h. For values of s1<0.336h, q12 is negative and therefore in the opposite direction to s1.
In the web 23, y=−h/2+s2, where 0≤s2≤h and x=0. Then

q23 = Sy
h3

s2∫
0

(3.42h− 6.84s2)ds2+ q2 (iv)
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Fig. 16.7

Shear flow distribution in Z-section of Example 16.1.

Wenote in Eq. (iv) that the shear flow is not zero when s2 = 0 but equal to the value obtained by inserting
s1 = h/2 in Eq. (iii)—that is, q2 = 0.42Sy/h. Integration of Eq. (iv) yields

q23 = Sy
h3

(
0.42h2+ 3.42hs2− 3.42s22

)
(v)

This distribution is symmetrical about Cx with a maximum value at s2=h/2(y=0), and the shear flow
is positive at all points in the web. The shear flow distribution in the upper flange may be deduced from
antisymmetry so that the complete distribution is of the form shown in Fig. 16.7.

16.2.1 Shear Center
We have defined the position of the shear center as that point in the cross section through which shear
loads produce no twisting. It may be shown by use of the reciprocal theorem that this point is also the
center of twist of sections subjected to torsion. There are, however, some important exceptions to this
general rule. Clearly, in the majority of practical cases, it is impossible to guarantee that a shear load
will act through the shear center of a section. Equally apparent is the fact that any shear load may be
represented by the combination of the shear load applied through the shear center and a torque. The
stresses produced by the separate actions of torsion and shear may then be added by superposition. It
is, therefore, necessary to know the location of the shear center in all types of section or to calculate its
position. Where a cross section has an axis of symmetry, the shear center must, of course, lie on this
axis. For cruciform or angle sections of the type shown in Fig. 16.8, the shear center is located at the
intersection of the sides, since the resultant internal shear loads all pass through these points.

Example 16.2
Calculate the position of the shear center of the thin-walled channel section shown in Fig. 16.9. The
thickness t of the walls is constant.
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Fig. 16.8

Shear center position for type of open section beam shown.

Fig. 16.9

Determination of shear center position of channel section of Example 16.2.

The shear center S lies on the horizontal axis of symmetry at some distance ξS, say, from the web.
If we apply an arbitrary shear load Sy through the shear center, then the shear flow distribution is given
by Eq. (16.14) and the moment about any point in the cross section produced by these shear flows is
equivalent to the moment of the applied shear load. Sy appears on both sides of the resulting equation
and may therefore be eliminated to leave ξS.
For the channel section,Cx is an axis of symmetry so that Ixy=0.AlsoSx=0 and thereforeEq. (16.14)

simplifies to

qs = − Sy
Ixx

s∫
0

tyds (i)

where

Ixx = 2bt
(
h

2

)2
+ th3

12
= h3t

12

(
1+ 6b

h

)
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Substituting for Ixx in Eq. (i), we have

qs = −12Sy
h3(1+ 6b/h)

s∫
0

yds (ii)

The amount of computation involved may be reduced by giving some thought to the requirements of
the problem. In this case, we are asked to find the position of the shear center only, not a complete
shear flow distribution. From symmetry, it is clear that the moments of the resultant shears on the top
and bottom flanges about the midpoint of the web are numerically equal and act in the same rotational
sense. Furthermore, the moment of the web shear about the same point is zero. We deduce that it is
only necessary to obtain the shear flow distribution on either the top or bottom flange for a solution.
Alternatively, choosing a web/flange junction as a moment center leads to the same conclusion.
On the bottom flange, y=−h/2 so that from Eq. (ii) we have

q12 = 6Sy
h2(1+ 6b/h) s1 (iii)

Equating the clockwise moments of the internal shears about the midpoint of the web to the clockwise
moment of the applied shear load about the same point gives

Syξs = 2
b∫
0

q12
h

2
ds1

or, by substitution from Eq. (iii)

Syξs = 2
b∫
0

6Sy
h2(1+ 6b/h)

h

2
s1ds1

from which

ξs = 3b2

h(1+ 6b/h) (iv)

In the case of an unsymmetrical section, the coordinates (ξS, ηS) of the shear center referred to some
convenient point in the cross section would be obtained by first determining ξS in a similar manner to
that of Example 16.2 and then finding ηS by applying a shear load Sx through the shear center. In both
cases, the choice of a web/flange junction as a moment center reduces the amount of computation.

16.3 SHEAR OF CLOSED SECTION BEAMS
The solution for a shear-loaded closed section beam follows a similar pattern to that described in
Section 16.2 for an open section beam but with two important differences. First, the shear loads may be
applied through points in the cross section other than the shear center so that torsional as well as shear
effects are included. This is possible, since, as we shall see, shear stresses produced by torsion in closed
section beams have exactly the same form as shear stresses produced by shear, unlike shear stresses due
to shear and torsion in open section beams. Secondly, it is generally not possible to choose an origin for
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Fig. 16.10

Shear of closed section beams.

s at which the value of shear flow is known. Consider the closed section beam of arbitrary section shown
in Fig. 16.10. The shear loads Sx and Sy are applied through any point in the cross section and, in general,
cause direct bending stresses and shear flows which are related by the equilibrium equation (16.2). We
assume that hoop stresses and body forces are absent. Therefore,

∂q

∂s
+ t ∂σz

∂z
= 0

From this point, the analysis is identical to that for a shear loaded open section beam until we reach the
stage of integrating Eq. (16.13), namely,

s∫
0

∂q

∂s
ds= −

(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tyds

Let us suppose that we choose an origin for s where the shear flow has the unknown value qs,0.
Integration of Eq. (16.13) then gives

qs− qs,0 = −
(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tyds

or

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tyds+ qs,0 (16.15)

We observe by comparison of Eqs. (16.15) and (16.14) that the first two terms on the right-hand side
of Eq. 16.15 represent the shear flow distribution in an open section beam loaded through its shear
center. This fact indicates a method of solution for a shear loaded closed section beam. Representing
this “open” section or “basic” shear flow by qb, we may write Eq. (16.15) in the form

qs = qb+ qs,0 (16.16)
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Fig. 16.11

(a) Determination of qs,0; (b) equivalent loading on “open” section beam.

We obtain qb by supposing that the closed beam section is “cut” at some convenient point, thereby
producing an “open” section (see Fig. 16.11(b)). The shear flow distribution (qb) around this “open”
section is given by

qb = −
(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

txds−
(
SyIyy− SxIxy
IxxIxy− I2xy

) s∫
0

tyds

as in Section 16.2. The value of shear flow at the cut (s= 0) is then found by equating applied and
internal moments taken about some convenient moment center. Then, from Fig. 16.11(a),

Sxη0− Syξ0 =
∮
pqds=

∮
pqb ds+ qs,0

∮
pds,

where
∮
denotes integration completely around the cross section. In Fig. 16.11(a),

δA= 1

2
δsp

so that ∮
dA= 1

2

∮
pds

Hence, ∮
pds= 2A

where A is the area enclosed by the midline of the beam section wall. Hence,

Sxη0− Syξ0 =
∮
pqbds+ 2Aqs,0 (16.17)
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If the moment center is chosen to coincide with the lines of action of Sx and Sy, then Eq. (16.17)
reduces to

0=
∮
pqb ds+ 2Aqs,0 (16.18)

The unknown shear flow qs,0 follows from either of Eqs. (16.17) or (16.18).
It is worthwhile to consider some of the implications of the above process. Equation (16.14) repre-

sents the shear flow distribution in an open section beam for the condition of zero twist. Therefore, by
“cutting” the closed section beam of Fig. 16.11(a) to determine qb, we are, in effect, replacing the shear
loads of Fig. 16.11(a) by shear loads Sx and Sy acting through the shear center of the resulting “open”
section beam together with a torque T as shown in Fig. 16.11(b). We shall show in Section 17.1 that
the application of a torque to a closed section beam results in a constant shear flow. In this case, the
constant shear flow qs,0 corresponds to the torque but will have different values for different positions of
the “cut,” since the corresponding various “open” section beams will have different locations for their
shear centers. An additional effect of “cutting” the beam is to produce a statically determinate structure,
since the qb shear flows are obtained from statical equilibrium considerations. It follows that a single
cell closed section beam supporting shear loads is singly redundant.

16.3.1 Twist and Warping of Shear-Loaded Closed Section Beams
Shear loads which are not applied through the shear center of a closed section beam cause cross sections
to twist and warp; in other words, in addition to rotation, they suffer out of plane axial displacements.
Expressions for these quantities may be derived in terms of the shear flow distribution qs as follows.
Since q=τ t and τ =Gγ (see Chapter 1), then we can express qs in terms of the warping and tangential
displacements w and vt of a point in the beam wall by using Eq. (16.6). Thus,

qs = Gt
(

∂w

∂s
+ ∂vt

∂z

)
(16.19)

Substituting for ∂vt/∂z from Eq. (16.10), we have

qs
Gt

= ∂w

∂s
+ pdθ

dz
+ du

dz
cosψ + dv

dz
sinψ (16.20)

Integrating Eq. (16.20) with respect to s from the chosen origin for s and noting that G may also be a
function of s, we obtain

s∫
0

qs
Gt
ds=

s∫
0

∂w

∂s
ds+ dθ

dz

s∫
0

pds+ du

dz

s∫
0

cosψ ds+ dv

dz

s∫
0

sinψ ds

or
s∫
0

qs
Gt
ds=

s∫
0

∂w

∂s
ds+ dθ

dz

s∫
0

pds+ du

dz

s∫
0

dx+ dv

dz

s∫
0

dy
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which gives

s∫
0

qs
Gt
ds= (ws−w0) + 2AOs dθ

dz
+ du

dz
(xs− x0) + dv

dz
(ys− y0), (16.21)

where AOs is the area swept out by a generator, center at the origin of axes, O, from the origin for s
to any point s around the cross section. Continuing the integration completely around the cross section
yields, from Eq. (16.21) ∮

qs
Gt
ds= 2Adθ

dz

from which

dθ

dz
= 1

2A

∮
qs
Gt
ds (16.22)

Substituting for the rate of twist in Eq. (16.21) from Eq. (16.22) and rearranging, we obtain the warping
distribution around the cross section

ws−w0 =
s∫
0

qs
Gt
ds− AOs

A

∮
qs
Gt
ds− du

dz
(xs− x0) − dv

dz
(ys− y0) (16.23)

Using Eqs. (16.11) to replace du/dz and dv/dz in Eq. (16.23), we have

ws−w0 =
s∫
0

qs
Gt
ds− AOs

A

∮
qs
Gt
ds− yR dθ

dz
(xs− x0) + xR dθ

dz
(ys− y0) (16.24)

The last two terms in Eq. (16.24) represent the effect of relating the warping displacement to an arbitrary
origin, which itself suffers axial displacement due to warping. In the case where the origin coincides
with the center of twist R of the section, then Eq. (16.24) simplifies to

ws−w0 =
s∫
0

qs
Gt
ds− AOs

A

∮
qs
Gt
ds (16.25)

In problems involving singly or doubly symmetrical sections, the origin for s may be taken to coincide
with a point of zero warping which will occur where an axis of symmetry and the wall of the section
intersect. For unsymmetrical sections, the origin for s may be chosen arbitrarily. The resulting warping
distribution will have exactly the same form as the actual distribution but will be displaced axially by
the unknown warping displacement at the origin for s. This value may be found by referring to the
torsion of closed section beams subject to axial constraint. In the analysis of such beams, it is assumed
that the direct stress distribution set up by the constraint is directly proportional to the free warping of
the section—that is,

σ = constant×w
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Also, since a pure torque is applied, the resultant of any internal direct stress system must be zero; in
other words, it is self-equilibrating. Thus,

Resultant axial load =
∮

σ t ds

where σ is the direct stress at any point in the cross section. Then, from the above assumption

0=
∮
wt ds

or

0=
∮

(ws−w0)t ds
so that

w0 =
∮
wst ds∮
t ds

(16.26)

16.3.2 Shear Center
The shear center of a closed section beam is located in a similarmanner to that described in Section 16.2.1
for open section beams. Therefore, to determine the coordinate ξS (referred to any convenient point in
the cross section) of the shear center S of the closed section beam shown in Fig. 16.12, we apply an
arbitrary shear load Sy through S, calculate the distribution of shear flow qs due to Sy, and then equate
internal and external moments. However, a difficulty arises in obtaining qs,0, since, at this stage, it is
impossible to equate internal and external moments to produce an equation similar to Eq. (16.17), as
the position of Sy, is unknown. We therefore use the condition that a shear load acting through the shear

Fig. 16.12

Shear center of a closed section beam.
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center of a section produces zero twist. It follows that dθ/dz in Eq. (16.22) is zero so that

0=
∮
qs
Gt
ds

or

0=
∮
1

Gt
(qb+ qs,0)ds

which gives

qs,0 = −
∮
(qb/Gt)ds∮
ds/Gt

(16.27)

If Gt=constant, then Eq. (16.27) simplifies to

qs,0 = −
∮
qb ds∮
ds

(16.28)

The coordinate ηS is found in a similar manner by applying Sx through S.

Example 16.3
A thin-walled closed section beam has the singly symmetrical cross section shown in Fig. 16.13. Each
wall of the section is flat and has the same thickness t and shear modulus G. Calculate the distance of
the shear center from point 4.

The shear center clearly lies on the horizontal axis of symmetry so that it is only necessary to apply
a shear load Sy through S and to determine ξS. If we take the x reference axis to coincide with the axis

Fig. 16.13

Closed section beam of Example 16.3.
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of symmetry, then Ixy=0, and since Sx=0, Eq. (16.15) simplifies to

qs = − Sy
Ixx

s∫
0

tyds+ qs,0 (i)

in which

Ixx = 2
⎡
⎣ 10a∫
0

t

(
8

10
s1

)2
ds1+

17a∫
0

t

(
8

17
s2

)2
ds2

⎤
⎦

Evaluating this expression gives Ixx=1152a3t.
The basic shear flow distribution qb is obtained from the first term in Eq. (i). Then, for the wall 41

qb,41 = −Sy
1152a3t

s1∫
0

t

(
8

10
s1

)
ds1 = −Sy

1152a3

(
2

5
s21

)
(i)

In the wall 12,

qb,12 = −Sy
1152a3

⎡
⎣ s2∫
0

(17a− s2) 8
17
ds2+ 40a2

⎤
⎦ (ii)

which gives

qb,12 = −Sy
1152a3

(
− 4

17
s22+ 8as2+ 40a2

)
(iii)

The qb distributions in the walls 23 and 34 follow from symmetry. Hence, from Eq. (16.28),

qs,0 = 2Sy
54a× 1152a3

⎡
⎣ 10a∫
0

2

5
s21 ds1+

17a∫
0

(
− 4

17
s22+ 8as2+ 40a2

)
ds2

⎤
⎦

giving

qs,0 = Sy
1152a3

(
58.7a2

)
(iv)

Taking moments about the point 2, we have

Sy(ξS+ 9a) = 2
10a∫
0

q4117a sinθ ds1

or

Sy(ξS+ 9a) = Sy34a sinθ

1152a3

10a∫
0

(
−2
5
s21+ 58.7a2

)
ds1 (v)
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We may replace sin θ by sin(θ1−θ2)= sinθ1 cosθ2− cosθ1 sinθ2, where sinθ1=15/17,cosθ2=
8/10,cosθ1=8/17, and sinθ2=6/10. Substituting these values and integrating Eq. (v) gives

ξS = −3.35a
which means that the shear center is inside the beam section.

Reference
[1] Megson, T.H.G., Structural and Stress Analysis, 2nd edition, Elsevier, 2005.

Problems
P.16.1 A beam has the singly symmetrical, thin-walled cross section shown in Fig. P.16.1. The thickness t of the
walls is constant throughout. Show that the distance of the shear center from the web is given by

ξS = −d ρ2 sinα cosα

1+ 6ρ + 2ρ3 sin2α
where

ρ = d/h

Fig. P.16.1

P.16.2 A beam has the singly symmetrical, thin-walled cross section shown in Fig. P.16.2. Each wall of the section
is flat and has the same length a and thickness t. Calculate the distance of the shear center from the point 3.

Ans. 5acosα/8.
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Fig. P.16.2 Fig. P.16.3

P.16.3 Determine the position of the shear center S for the thin-walled, open cross section shown in Fig. P.16.3.
The thickness t is constant.

Ans. πr/3.

P.16.4 Figure P.16.4 shows the cross section of a thin, singly symmetrical I-section. Show that the distance ξS of
the shear center from the vertical web is given by

ξS

d
= 3ρ(1− β)

(1+ 12ρ)

where ρ =d/h. The thickness t is taken to be negligibly small in comparison with the other dimensions.

Fig. P.16.4 Fig. P.16.5

P.16.5 A thin-walled beam has the cross section shown in Fig. P.16.5. The thickness of each flange varies linearly
from t1 at the tip to t2 at the junction with the web. The web itself has a constant thickness t3. Calculate the distance
ξS from the web to the shear center S.

Ans. d2(2t1+ t2)/[3d(t1+ t2) + ht3].
P.16.6 Figure P.16.6 shows the singly symmetrical cross section of a thin-walled open section beam of constant
wall thickness t, which has a narrow longitudinal slit at the corner 15.



498 CHAPTER 16 Shear of Beams

Calculate and sketch the distribution of shear flow due to a vertical shear force Sy acting through the shear
center S and note the principal values. Show also that the distance ξS of the shear center from the nose of the section
is ξS= l/2(1+a/b).
Ans. q2=q4=3bSy/2h(b+a), q3=3Sy/2h. Parabolic distributions.

Fig. P.16.6

P.16.7 Show that the position of the shear center S with respect to the intersection of the web and lower flange of
the thin-walled section shown in Fig. P.16.7, is given by

ξS = −45a/97, ηS = 46a/97

Fig. P.16.7 Fig. P.16.8

P.16.8 Define the term “shear center” of a thin-walled open section and determine the position of the shear center
of the thin-walled open section shown in Fig. P.16.8.

Ans. 2.66r from center of semicircular wall.
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P.16.9 Determine the position of the shear center of the cold-formed, thin-walled section shown in Fig. P.16.9.
The thickness of the section is constant throughout.

Ans. 87.5mm above center of semicircular wall.

Fig. P.16.9

P.16.10 Find the position of the shear center of the thin-walled beam section shown in Fig. P.16.10.

Ans. 1.2r on axis of symmetry to the left of the section.

Fig. P.16.10

P.16.11 Calculate the position of the shear center of the thin-walled section shown in Fig. P.16.11.

Ans. 20.2mm to the left of the vertical web on axis of symmetry.
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Fig. P.16.11 Fig. P.16.12

P.16.12 A thin-walled closed section beam of constant wall thickness t has the cross section shown in
Fig. P.16.12.

Assuming that the direct stresses are distributed according to the basic theory of bending, calculate and sketch
the shear flow distribution for a vertical shear force Sy applied tangentially to the curved part of the beam.

Ans. qO1 = Sy(1.61cosθ − 0.80)/r

q12 = Sy
r3
(
0.57s2− 1.14rs+ 0.33r2).

P.16.13 A uniform thin-walled beam of constant wall thickness t has a cross section in the shape of an isosce-
les triangle and is loaded with a vertical shear force Sy applied at the apex. Assuming that the distribution of
shear stress is according to the basic theory of bending, calculate the distribution of shear flow over the cross
section.

Illustrate your answer with a suitable sketch, marking in carefully with arrows the direction of the shear flows
and noting the principal values.

Ans. q12=Sy(3s21/d−h−3d)/h(h+2d)
q23 = Sy(−6s22+ 6hs2− h2)/h2(h+ 2d).

P.16.14 Figure P.16.14 shows the regular hexagonal cross section of a thin-walled beam of sides a and constant
wall thickness t. The beam is subjected to a transverse shear force S, its line of action being along a side of the
hexagon, as shown.
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Fig. P.16.13 Fig. P.16.14

Plot the shear flow distribution around the section, with values in terms of S and a.

Ans. q1=−0.52S/a, q2=q8=−0.47S/a, q3=q7=−0.17S/a,
q4=q6=0.13S/a, q5=0.18S/a

Parabolic distributions, q positive clockwise.

P.16.15 A box girder has the singly symmetrical trapezoidal cross section shown in Fig. P.16.15. It supports a
vertical shear load of 500kN applied through its shear center and in a direction perpendicular to its parallel sides.
Calculate the shear flow distribution and the maximum shear stress in the section.

Ans. qOA = 0.25sA
qAB = 0.21sB− 2.14× 10−4s2B+ 250
qBC = −0.17sC+ 246
τmax = 30.2N/mm2.

Fig. P.16.15
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CHAPTER

17Torsion of Beams

In Chapter 3, we developed the theory for the torsion of solid sections using both the Prandtl stress
function approach and the St. Venant warping function solution. From that point we looked, via the
membrane analogy, at the torsion of a narrow rectangular strip. We shall use the results of this analysis
to investigate the torsion of thin-walled open section beams, but first we shall examine the torsion
of thin-walled closed section beams, since the theory for this relies on the general stress, strain, and
displacement relationships which we established in Chapter 16.

17.1 TORSION OF CLOSED SECTION BEAMS
A closed section beam subjected to a pure torque T as shown in Fig. 17.1 does not, in the absence of an
axial constraint, develop a direct stress system. It follows that the equilibrium conditions of Eqs. (16.2)
and (16.3) reduce to ∂q/∂s=0 and ∂q/∂z=0, respectively. These relationships may only be satisfied
simultaneously by a constant value of q. We deduce, therefore, that the application of a pure torque to a
closed section beam results in the development of a constant shear flow in the beam wall. However, the
shear stress τ may vary around the cross section, since we allow the wall thickness t to be a function
of s. The relationship between the applied torque and this constant shear flow is simply derived by
considering the torsional equilibrium of the section shown in Fig. 17.2. The torque produced by the

Fig. 17.1

Torsion of a closed section beam.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
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Fig. 17.2

Determination of the shear flow distribution in a closed section beam subjected to torsion.

shear flow acting on an element δs of the beam wall is pqδs. Hence,

T =
∮
pqds

or, since q is constant and
∮
pds=2A (see Section 16.3)

T = 2Aq (17.1)

Note that the origin O of the axes in Fig. 17.2 may be positioned in or outside the cross section of
the beam, since the moment of the internal shear flows (whose resultant is a pure torque) is the same
about any point in their plane. For an origin outside the cross section, the term

∮
pds will involve the

summation of positive and negative areas. The sign of an area is determined by the sign of p, which itself
is associated with the sign convention for torque as follows. If the movement of the foot of p along the
tangent at any point in the positive direction of s leads to an anticlockwise rotation of p about the origin
of axes, p is positive. The positive direction of s is in the positive direction of q, which is anticlockwise
(corresponding to a positive torque). Thus, in Fig. 17.3 a generator OA, rotating about O, will initially
sweep out a negative area, since pA is negative. At B, however, pB is positive so that the area swept out
by the generator has changed sign (at the point where the tangent passes through O and p=0). Positive
and negative areas cancel each other out as they overlap, so as the generator moves completely around
the section, starting and returning to A, say, the resultant area is that enclosed by the profile of the beam.
The theory of the torsion of closed section beams is known as the Bredt–Batho theory, and Eq. (17.1)

is often referred to as the Bredt–Batho formula.

17.1.1 Displacements Associated with the Bredt–Batho Shear Flow
The relationship between q and shear strain γ established in Eq. (16.19), namely,

q = Gt
(

∂w

∂s
+ ∂vt

∂z

)
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Fig. 17.3

Sign convention for swept areas.

is valid for the pure torsion case, where q is constant. Differentiating this expression with respect to z,
we have

∂q

∂z
= Gt

(
∂2w

∂z∂s
+ ∂2vt

∂z2

)
= 0

or

∂

∂s

(
∂w

∂z

)
+ ∂2vt

∂z2
= 0 (17.2)

In the absence of direct stresses, the longitudinal strain ∂w/∂z(=εz) is zero so that

∂2vt
∂z2

= 0

Hence, from Eq. (16.7)

p
d2θ

dz2
+ d2u

dz2
cosψ + d2v

dz2
sinψ = 0 (17.3)

For Eq. (17.3) to hold for all points around the section wall, in other words for all values of ψ

d2θ

dz2
= 0, d2u

dz2
= 0, d2v

dz2
= 0
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It follows that θ =Az+B, u=Cz+D, v=Ez+F, where A, B, C, D, E, and F are unknown constants.
Thus, θ , u, and v are all linear functions of z.
Equation (16.22), relating the rate of twist to the variable shear flow qs developed in a shear loaded

closed section beam, is also valid for the case qs=q=constant. Hence,
dθ

dz
= q

2A

∮
ds

Gt

which becomes, on substituting for q from Eq. (17.1)

dθ

dz
= T

4A2

∮
ds

Gt
(17.4)

The warping distribution produced by a varying shear flow, as defined by Eq. (16.25) for axes having
their origin at the center of twist, is also applicable to the case of a constant shear flow. Thus,

ws−w0 = q
s∫
0

ds

Gt
− AOs
A
q
∮
ds

Gt

Replacing q from Eq. (17.1), we have

ws−w0 = Tδ

2A

(
δOs

δ
− AOs
A

)
(17.5)

where

δ =
∮
ds

Gt
and δOs =

s∫
0

ds

Gt

The sign of thewarping displacement in Eq. (17.5) is governed by the sign of the applied torque T and
the signs of the parameters δOs andAOs. Having specified initially that a positive torque is anticlockwise,
the signs of δOs and AOs are fixed in that δOs is positive when s is positive; that is, s is taken as positive
in an anticlockwise sense, and AOs is positive when, as before, p (see Fig. 17.3) is positive.
We have noted that the longitudinal strain εz is zero in a closed section beam subjected to a pure

torque. This means that all sections of the beam must possess identical warping distributions. In other
words, longitudinal generators of the beam surface remain unchanged in length although subjected to
axial displacement.

Example 17.1
A thin-walled circular section beam has a diameter of 200mm and is 2m long; it is firmly restrained
against rotation at each end. A concentrated torque of 30kNm is applied to the beam at its midspan
point. If the maximum shear stress in the beam is limited to 200N/mm2 and the maximum angle of
twist to 2◦, calculate the minimum thickness of the beam walls. Take G=25000N/mm2.
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The minimum thickness of the beam corresponding to the maximum allowable shear stress of
200N/mm2 is obtained directly using Eq. (17.1) in which Tmax=15kNm.
Then

tmin = 15× 106× 4
2× π × 2002× 200 = 1.2mm

The rate of twist along the beam is given by Eq. (17.4) in which∮
ds

t
= π × 200

tmin

Hence

dθ

dz
= T

4A2G
× π × 200

tmin
(i)

Taking the origin for z at one of the fixed ends and integrating Eq. (i) for half the length of the beam,
we obtain

θ = T

4A2G
× 200π

tmin
z+C1,

where C1 is a constant of integration. At the fixed end where z=0, θ =0, so C1=0.
Hence

θ = T

4A2G
× 200π

tmin
z

The maximum angle of twist occurs at the midspan of the beam where z=1m. Hence

tmin = 15× 106× 200× π × 1× 103× 180
4× (π × 2002/4)2× 25000× 2× π

= 2.7mm

The minimum allowable thickness that satisfies both conditions is therefore 2.7mm.

Example 17.2
Determine the warping distribution in the doubly symmetrical rectangular, closed section beam, shown
in Fig. 17.4, when subjected to an anticlockwise torque T .

From symmetry, the center of twist R will coincide with the midpoint of the cross section, and points
of zero warping will lie on the axes of symmetry at the midpoints of the sides. We shall, therefore, take
the origin for s at the midpoint of side 14 and measure s in the positive, anticlockwise, sense around the
section. Assuming the shear modulus G to be constant, we rewrite Eq. (17.5) in the form

ws−w0 = Tδ

2AG

(
δOs

δ
− AOs
A

)
(i)
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Fig. 17.4

Torsion of a rectangular section beam for Example 17.2.

where

δ =
∮
ds

t
and δOs =

s∫
0

ds

t

In Eq. (i),

w0 = 0, δ = 2
(
b

tb
+ a

ta

)
and A= ab

From 0 to 1, 0 ≤s1≤b/2 and

δOs =
s1∫
0

ds1
tb

= s1
tb

AOs = as1
4

(ii)

Note that δOs and AOs are both positive.
Substitution for δOs and AOs from Eq. (ii) in (i) shows that the warping distribution in the wall 01,

w01, is linear. Also,

w1 = T

2abG
2

(
b

tb
+ a

ta

)[
b/2tb

2(b/tb+ a/ta) − ab/8

ab

]
which gives

w1 = T

8abG

(
b

tb
− a

ta

)
(iii)

The remainder of the warping distribution may be deduced from symmetry and the fact that the warping
must be zero at points where the axes of symmetry and the walls of the cross section intersect. It follows
that

w2 = −w1 = −w3 = w4
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giving the distribution shown in Fig. 17.5. Note that the warping distribution will take the form shown
in Fig. 17.5 as long as T is positive and b/tb>a/ta. If either of these conditions is reversed, w1 and w3
will become negative and w2 and w4 positive. In the case when b/tb=a/ta, the warping is zero at all
points in the cross section.
Suppose now that the origin for s is chosen arbitrarily at, say, point 1. Then, from Fig. 17.6, δOs in

the wall 12=s1/ta and AOs= 1
2 s1b/2=s1b/4, and both are positive.

Fig. 17.5

Warping distribution in the rectangular section beam of Example 17.2.

Fig. 17.6

Arbitrary origin for s.
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Substituting in Eq. (i) and setting w0=0

w′
12 = Tδ

2abG

(
s1
δta

− s1
4a

)
(iv)

so that w′
12 varies linearly from zero at 1 to

w′
2 = T

2abG
2

(
b

tb
+ a

ta

)[
a

2(b/tb+ a/ta)ta − 1

4

]

at 2. Thus,

w′
2 = T

4abG

(
a

ta
− b

tb

)
or

w′
2 = − T

4abG

(
b

tb
− a

ta

)
(v)

Similarly,

w′
23 = Tδ

2abG

[
1

δ

(
a

ta
+ s2
tb

)
− 1

4b
(b+ s2)

]
(vi)

The warping distribution therefore varies linearly from a value −T(b/tb−a/ta)/4abG at 2 to zero
at 3. The remaining distribution follows from symmetry so that the complete distribution takes the form
shown in Fig. 17.7.

Fig. 17.7

Warping distribution produced by selecting an arbitrary origin for s.
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Comparing Figs. 17.5 and 17.7, it can be seen that the form of the warping distribution is the same
but that in the latter case the complete distribution has been displaced axially. The actual value of the
warping at the origin for s is found using Eq. (16.26).
Thus,

w0 = 2

2(ata+ btb)

⎛
⎝ a∫
0

w′
12ta ds1+

b∫
0

w′
23tb ds2

⎞
⎠ (vii)

Substituting in Eq. (vii) for w′
12 and w

′
23 from Eqs. (iv) and (vi), respectively, and evaluating give

w0 = − T

8abG

(
b

tb
− a

ta

)
(viii)

Subtracting this value from the values of w′
1(=0) and w′

2(=−T(b/tb−a/ta)/4abG), we have

w1 = T

8abG

(
b

tb
− a

ta

)
, w2 = − T

8abG

(
b

tb
− a

ta

)

as before. Note that setting w0=0 in Eq. (i) implies that w0, the actual value of warping at the origin
for s, has been added to all warping displacements. This value must therefore be subtracted from the
calculated warping displacements (i.e., those based on an arbitrary choice of origin) to obtain true
values.
It is instructive at this stage to examine the mechanics of warping to see how it arises. Suppose that

each end of the rectangular section beam of Example 17.2 rotates through opposite angles θ , giving a
total angle of twist 2θ along its length L. The corner 1 at one end of the beam is displaced by amounts
aθ/2 vertically and bθ/2 horizontally, as shown in Fig. 17.8. Consider now the displacements of the
web and cover of the beam due to rotation. From Figs. 17.8 and 17.9(a) and (b), it can be seen that the
angles of rotation of the web and the cover are, respectively,

φb = (aθ/2)/(L/2) = aθ/L

and

φa = (bθ/2)/(L/2) = bθ/L

The axial displacements of the corner 1 in the web and cover are then

b

2

aθ

L
,
a

2

bθ

L

respectively, as shown in Fig. 17.9(a) and (b). In addition to displacements produced by twisting, the
webs and covers are subjected to shear strains γb and γa corresponding to the shear stress system given
by Eq. (17.1). Due to γb, the axial displacement of corner 1 in the web is γbb/2 in the positive z direction,
while in the cover the displacement is γaa/2 in the negative z direction. Note that the shear strains γb
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Fig. 17.8

Twisting of a rectangular section beam.

Fig. 17.9

Displacements due to twist and shear strain.

and γa correspond to the shear stress system produced by a positive anticlockwise torque. Clearly, the
total axial displacement of the point 1 in the web and cover must be the same so that

−b
2

aθ

L
+ γb

b

2
= a

2

bθ

L
− γa

a

2

from which

θ = L

2ab
(γaa+ γbb)
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The shear strains are obtained from Eq. (17.1) and are

γa = T

2abGta
, γb = T

2abGtb

from which

θ = TL

4a2b2G

(
a

ta
+ b

tb

)
The total angle of twist from end to end of the beam is 2θ , therefore,

2θ

L
= TL

4a2b2G

(
2a

ta
+ 2b

tb

)
or

dθ

dz
= T

4A2G

∮
ds

t

as in Eq. (17.4).
Substituting for θ in either of the expressions for the axial displacement of the corner 1 gives the

warping w1 at 1. Thus,

w1 = a

2

b

L

TL

4a2b2G

(
a

ta
+ b

tb

)
− T

2abGta

a

2

that is,

w1 = T

8abG

(
b

tb
− a

ta

)
as before. It can be seen that the warping of the cross section is produced by a combination of the
displacements caused by twisting and the displacements due to the shear strains; these shear strains
correspond to the shear stresses whose values are fixed by statics. The angle of twist must therefore be
such as to ensure compatibility of displacement between the webs and covers.

17.1.2 Condition for Zero Warping at a Section
The geometry of the cross section of a closed section beam subjected to torsion may be such that no
warping of the cross section occurs. From Eq. (17.5), we see that this condition arises when

δOs

δ
= AOs

A

or

1

δ

s∫
0

ds

Gt
= 1

2A

s∫
0

pR ds (17.6)
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Differentiating Eq. (17.6) with respect to s gives

1

δGt
= pR
2A

or

pRGt = 2A

δ
= constant (17.7)

A closed section beam for which pRGt=constant does not warp and is known as a Neuber beam. For
closed section beams having a constant shear modulus, the condition becomes

pRt = constant (17.8)

Examples of such beams are a circular section beam of constant thickness; a rectangular section beam
for which atb=bta (see Example 17.2); and a triangular section beam of constant thickness. In the last
case the shear center, and hence the center of twist, may be shown to coincide with the center of the
inscribed circle so that pR for each side is the radius of the inscribed circle.

17.2 TORSION OF OPEN SECTION BEAMS
An approximate solution for the torsion of a thin-walled open section beam may be found by applying
the results obtained in Section 3.4 for the torsion of a thin rectangular strip. If such a strip is bent to
form an open section beam, as shown in Fig. 17.10(a), and if the distance s measured around the cross
section is large compared with its thickness t, then the contours of the membrane—that is, the lines
of shear stress—are still approximately parallel to the inner and outer boundaries. It follows that the
shear lines in an element δs of the open section must be nearly the same as those in an element δy of a
rectangular strip as demonstrated in Fig. 17.10(b). Equations (3.27), (3.28), and (3.29) may therefore
be applied to the open beam but with reduced accuracy. Referring to Fig. 17.10(b), we observe that
Eq. (3.27) becomes

τzs = 2Gndθ
dz
, τzn = 0 (17.9)

Equation (3.28) becomes

τzs,max = ±Gt dθ
dz

(17.10)

and Eq. (3.29) is

J =
∑ st3

3
or J = 1

3

∫
sect

t3 ds (17.11)

In Eq. (17.11), the second expression for the torsion constant is used if the cross section has a variable
wall thickness. Finally, the rate of twist is expressed in terms of the applied torque by Eq. (3.12)—
that is,

T = GJ dθ
dz

(17.12)
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Fig. 17.10

(a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of elemental shear
lines to those in a thin rectangular strip.

The shear stress distribution and the maximum shear stress are sometimes more conveniently expressed
in terms of the applied torque. Therefore, substituting for dθ/dz in Eqs. (17.9) and (17.10) gives

τzs = 2n

J
T , τzs,max = ± tT

J
(17.13)

We assume in open beam torsion analysis that the cross section is maintained by the system of
closely spaced diaphragms described in Section 16.1 and that the beam is of uniform section. Clearly,
in this problem, the shear stresses vary across the thickness of the beam wall, whereas other stresses,
such as axial constraint stresses are assumed constant across the thickness.

17.2.1 Warping of the Cross Section
We saw in Section 3.4 that a thin rectangular strip suffers warping across its thickness when subjected to
torsion. In the same way, a thin-walled open section beam will warp across its thickness. This warping,
wt , may be deduced by comparing Fig. 17.10(b) with Fig. 3.10 and using Eq. (3.32), thus,

wt = nsdθ
dz

(17.14)
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In addition to warping across the thickness, the cross section of the beam will warp in a similar manner
to that of a closed section beam. From Fig. 16.3,

γzs = ∂w

∂s
+ ∂vt

∂ z
(17.15)

Referring the tangential displacement vt to the center of twist R of the cross section, we have from
Eq. (16.8)

∂vt
∂ z

= pR dθ
dz

(17.16)

Substituting for ∂vt/∂ z in Eq. (17.15) gives

γzs = ∂w

∂s
+ pR dθ

dz

from which

τzs = G
(

∂w

∂s
+ pR dθ

dz

)
(17.17)

On the midline of the section wall τ zs = 0 (see Eq. (17.9)) so that from Eq. (17.17)

∂w

∂s
= −pR dθ

dz

Integrating this expression with respect to s and taking the lower limit of integration to coincide with
the point of zero warping, we obtain

ws = −dθ
dz

s∫
0

pR ds (17.18)

From Eqs. (17.14) and (17.18) it can be seen that two types of warping exist in an open section beam.
Equation (17.18) gives the warping of the midline of the beam; this is known as primary warping and
is assumed to be constant across the wall thickness. Equation (17.14) gives the warping of the beam
across its wall thickness. This is called secondary warping, is very much less than primary warping,
and is usually ignored in the thin-walled sections common to aircraft structures.
Equation (17.18) may be rewritten in the form

ws = −2AR dθ
dz

(17.19)

or, in terms of the applied torque

ws = −2AR T
GJ

(see Eq. (17.12)) (17.20)

in which AR= 1
2

∫ s
0 pR ds is the area swept out by a generator, rotating about the center of twist, from the

point of zero warping, as shown in Fig. 17.11. The sign of ws, for a given direction of torque, depends
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Fig. 17.11

Warping of an open section beam.

on the sign of AR, which in turn depends on the sign of pR, the perpendicular distance from the center
of twist to the tangent at any point. Again, as for closed section beams, the sign of pR depends on the
assumed direction of a positive torque, in this case anticlockwise. Therefore, pR (and therefore AR)

is positive if movement of the foot of pR along the tangent in the assumed direction of s leads to an
anticlockwise rotation of pR about the center of twist. Note that for open section beams the positive
direction of s may be chosen arbitrarily, since, for a given torque, the sign of the warping displacement
depends only on the sign of the swept area AR.

Example 17.3
Determine the maximum shear stress and the warping distribution in the channel section shown in
Fig. 17.12 when it is subjected to an anticlockwise torque of 10Nm. G=25000N/mm2.

From the second of Eqs. (17.13), it can be seen that the maximum shear stress occurs in the web of
the section where the thickness is greatest. Also, from the first of Eqs. (17.11),

J = 1

3
(2× 25× 1.53+ 50× 2.53) = 316.7mm4

so that

τmax = ±2.5× 10× 103
316.7

= ±78.9N/mm2

The warping distribution is obtained using Eq. (17.20) in which the origin for s (and hence AR) is taken
at the intersection of the web and the axis of symmetry where the warping is zero. Further, the center of
twist R of the section coincides with its shear center S, with a position that is found using the method
described in Section 16.2.1, which gives ξS=8.04mm. In the wall O2

AR = 1

2
× 8.04s1 (pR is positive)
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Fig. 17.12

Channel section of Example 17.3.

so that

wO2 = −2× 1

2
× 8.04s1× 10× 103

25000× 316.7 = −0.01s1 (i)

that is, the warping distribution is linear in O2 and

w2 = −0.01× 25= −0.25mm
In the wall 21

AR = 1

2
× 8.04× 25− 1

2
× 25s2

in which the area swept out by the generator in the wall 21 provides a negative contribution to the total
swept area AR. Thus,

w21 = −25(8.04− s2) 10× 103
25000× 316.7

or

w21 = −0.03(8.04− s2) (ii)

Again, the warping distribution is linear and varies from−0.25mm at 2 to+0.54mm at 1. Examination
of Eq. (ii) shows that w21 changes sign at s2=8.04mm. The remaining warping distribution follows
from symmetry, and the complete distribution is shown in Fig. 17.13. In unsymmetrical section beams,
the position of the point of zero warping is not known but may be found using the method for the
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Fig. 17.13

Warping distribution in channel section of Example 17.3.

restrained warping of an open section beam. Thus, we can see that

2A′
R =

∫
sect 2AR,Ot ds∫

sect t ds
(17.21)

in which AR,O is the area swept out by a generator rotating about the center of twist from some
convenient origin, and A′

R is the value of AR,O at the point of zero warping. As an illustration, we shall
apply the method to the beam section of Example 17.3.
Suppose that the position of the center of twist (i.e., the shear center) has already been calculated,

and suppose also that we choose the origin for s to be at the point 1. Then, in Fig. 17.14,∫
sect

t ds= 2× 1.5× 25+ 2.5× 50= 200mm2

In the wall 12,

A12 = 1

2
× 25s1 (AR,O for the wall 12) (i)

from which

A2 = 1

2
× 25× 25= 312.5mm2

Also,

A23 = 312.5− 1

2
× 8.04s2 (ii)
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Fig. 17.14

Determination of points of zero warping.

and

A3 = 312.5− 1

2
× 8.04× 50= 111.5mm2

Finally,

A34 = 111.5+ 1

2
× 25s3 (iii)

Substituting for A12, A23, and A34 from Eqs. (i) to (iii) in Eq. (17.21), we have

2A′
R = 1

200

⎡
⎣ 25∫
0

25× 1.15s1 ds1+
50∫
0

2(312.5− 4.02s2)2.5ds2+
25∫
0

2(111.5+ 12.5s3)1.5ds3
⎤
⎦ (iv)

Evaluation of Eq. (iv) gives

2A′
R = 424mm2

We now examine each wall of the section in turn to determine points of zero warping. Suppose that in
the wall 12 a point of zero warping occurs at a value of s1 equal to s1,0. Then

2× 1

2
× 25s1,0 = 424
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from which

s1,0 = 16.96mm
so that a point of zero warping occurs in the wall 12 at a distance of 8.04 mm from the point 2 as before.
In the web 23, let the point of zero warping occur at s2=s2,0. Then

2× 1

2
× 25× 25− 2× 1

2
× 8.04s2,0 = 424

which gives s2,0=25mm (i.e., on the axis of symmetry). Clearly, from symmetry, a further point of zero
warping occurs in the flange 34 at a distance of 8.04mm from the point 3. The warping distribution is
then obtained directly using Eq. (17.20) in which

AR = AR,O−A′
R

Problems
P.17.1 A uniform, thin-walled, cantilever beam of closed rectangular cross section has the dimensions shown in
Fig. P.17.1. The shear modulus G of the top and bottom covers of the beam is 18000N/mm2, while that of the
vertical webs is 26000N/mm2.

Fig. P.17.1
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The beam is subjected to a uniformly distributed torque of 20Nm/mm along its length. Calculate the maximum
shear stress according to the Bred–Batho theory of torsion. Calculate also, and sketch, the distribution of twist along
the length of the cantilever, assuming that axial constraint effects are negligible.

Ans. τmax=83.3N/mm2, θ =8.14×10−9
(
2500z− z2

2

)
rad.

P.17.2 A single cell, thin-walled beam with the double trapezoidal cross section shown in Fig. P.17.2, is subjected
to a constant torque T=90500Nm and is constrained to twist about an axis through the point R. Assuming that the
shear stresses are distributed according to the Bredt–Batho theory of torsion, calculate the distribution of warping
around the cross section.

Illustrate your answer clearly by means of a sketch and insert the principal values of the warping displacements.
The shear modulus G=27500N/mm2 and is constant throughout.

Ans. w1=−w6=−0.53mm, w2=−w5=0.05mm, w3=−w4=0.38mm.
Linear distribution.

Fig. P.17.2

P.17.3 A uniform thin-walled beam is circular in cross section and has a constant thickness of 2.5mm. The beam is
2000mm long, carrying end torques of 450Nm and, in the same sense, a distributed torque loading of 1.0Nm/mm.
The loads are reacted by equal couples R at sections 500mm distant from each end (Fig. P.17.3).

Fig. P.17.3
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Calculate the maximum shear stress in the beam and sketch the distribution of twist along its length. Take
G=30000N/mm2 and neglect axial constraint effects.

Ans. τmax=24.2N/mm2, θ =−0.85×10−8z2 rad, 0 ≤ z ≤500mm,
θ =1.7×10−8(1450z− z2/2)−12.33×10−3 rad, 500 ≤ z ≤ 1000mm.

P.17.4 The thin-walled box section beam ABCD shown in Fig. P.17.4 is attached at each end to supports which
allow rotation of the ends of the beam in the longitudinal vertical plane of symmetry but prevent rotation of the ends
in vertical planes perpendicular to the longitudinal axis of the beam. The beam is subjected to a uniform torque
loading of 20Nm/mm over the portion BC of its span. Calculate the maximum shear stress in the cross section of
the beam and the distribution of angle of twist along its length, G=70000N/mm2.

Ans. 71.4N/mm2, θB=θC=0.36◦, θ at midspan=0.72◦.

Fig. P.17.4

P.17.5 Figure P.17.5 shows a thin-walled cantilever box beam having a constant width of 50mm and a depth which
decreases linearly from 200mm at the built-in end to 150mm at the free end. If the beam is subjected to a torque
of 1kNm at its free end, plot the angle of twist of the beam at 500mm intervals along its length and determine the
maximum shear stress in the beam section. Take G=25000N/mm2.

Ans. τmax=33.3N/mm2.

Fig. P.17.5

P.17.6 A uniform closed section beam, of the thin-walled section shown in Fig. P.17.6, is subjected to a twist-
ing couple of 4500Nm. The beam is constrained to twist about a longitudinal axis through the center C of the
semicircular arc 12. For the curved wall 12, the thickness is 2mm and the shear modulus is 22000N/mm2. For the
plane walls 23, 34, and 41, the corresponding figures are 1.6mm and 27500N/mm2. (Note: Gt=constant.)
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Calculate the rate of twist in rad/mm. Give a sketch illustrating the distribution of warping displacement in the
cross section and quote values at points 1 and 4.

Ans. dθ /dz=29.3×10−6 rad/mm, w3=−w4=−0.19mm,
w2=−w1=−0.056mm.

Fig. P.17.6

P.17.7 Auniform beamwith the doubly symmetrical cross section shown in Fig. P.17.7, has horizontal and vertical
walls made of different materials which have shear moduli Ga and Gb, respectively. If for any material the ratio
mass density/shear modulus is constant, find the ratio of the wall thicknesses ta and tb so that for a given torsional
stiffness and given dimensions a, b the beam has minimum weight per unit span. Assume the Bredt–Batho theory
of torsion is valid.

If this thickness requirement is satisfied, find the a/b ratio (previously regarded as fixed), which gives minimum
weight for given torsional stiffness.

Ans. tb/ta=Ga/Gb, b/a=1.

Fig. P.17.7 Fig. P.17.8

P.17.8 The cold-formed section shown in Fig. P.17.8 is subjected to a torque of 50Nm. Calculate the maximum
shear stress in the section and its rate of twist. G=25000N/mm2.

Ans. τmax=220.6N/mm2, dθ/dz=0.0044 rad/mm.
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P.17.9 Determine the rate of twist per unit torque of the beam section shown in Fig. P.16.11 if the shear modulus
G is 25000N/mm2. (Note that the shear center position has been calculated in P.16.11.)

Ans. 6.42×10−8 rad/mm.
P.17.10 Figure P.17.10 shows the cross section of a thin-walled beam in the form of a channel with lipped
flanges. The lips are of constant thickness 1.27mm while the flanges increase linearly in thickness from 1.27mm,
where they meet the lips to 2.54mm at their junctions with the web. The web has a constant thickness of 2.54mm.
The shear modulus G is 26700N/mm2 throughout.

Fig. P.17.10

The beam has an enforced axis of twist RR′ and is supported in such a way that warping occurs freely but
is zero at the midpoint of the web. If the beam carries a torque of 100Nm, calculate the maximum shear stress
according to the St. Venant theory of torsion for thin-walled sections. Ignore any effects of stress concentration at
the corners. Find also the distribution of warping along the middle line of the section, illustrating your results by
means of a sketch.

Ans. τmax=±297.4N/mm2, w1=−5.48mm=−w6.
w2=5.48mm=−w5, w3=17.98mm=−w4.
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P.17.11 The thin-walled section shown in Fig. P.17.11 is symmetrical about the x axis. The thickness t0 of the
center web 34 is constant, while the thickness of the other walls varies linearly from t0 at points 3 and 4 to zero at
the open ends 1, 6, 7, and 8.

Determine the St. Venant torsion constant J for the section and also the maximum value of the shear stress
due to a torque T . If the section is constrained to twist about an axis through the origin O, plot the relative warping
displacements of the section per unit rate of twist.

Ans. J=4at30/3, τmax=±3T/4at20 , w1=+a2(1+ 2√2).
w2=+√

2a2, w7=−a2, w3=0.

Fig. P.17.11 Fig. P.17.12

P.17.12 The thin-walled section shown in Fig. P.17.12 is constrained to twist about an axis through R, the center
of the semicircular wall 34. Calculate the maximum shear stress in the section per unit torque and the warping
distribution per unit rate of twist. Also compare the value of warping displacement at the point 1 with that
corresponding to the section being constrained to twist about an axis through the point O, and state what effect
this movement has on the maximum shear stress and the torsional stiffness of the section.

Ans. Maximum shear stress is ±0.42/rt2 per unit torque.

w03 = +r2θ , w32 = + r
2
(πr+ 2s1), w21 = − r

2
(2s2− 5.142r).

With center of twist at O1 w1=−0.43r2. Maximum shear stress is unchanged, torsional stiffness increased, since
warping reduced.
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P.17.13 Determine the maximum shear stress in the beam section shown in Fig. P.17.13, stating clearly the
point at which it occurs. Determine also the rate of twist of the beam section if the shearmodulusG is 25000N/mm2.

Ans. 70.2N/mm2 on underside of 24 at 2 or on upper surface of 32 at 2.
9.0×10−4 rad/mm.

Fig. P.17.13
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CHAPTER

18Combined Open and Closed
Section Beams

So far, inChapters 15 through17,wehave analyzed thin-walled beamswhich consist of either completely
closed cross sections or completely open cross sections. Frequently, aircraft components comprise
combinations of open and closed section beams. For example, the section of a wing in the region of an
undercarriage bay could take the form shown in Fig. 18.1. Clearly, part of the section is an open channel
section, while the nose portion is a single cell closed section. We shall now examine the methods of
analysis of such sections when subjected to bending, shear, and torsional loads.

18.1 BENDING
It is immaterial what form the cross section of a beam takes; the direct stresses due to bending are given
by either of Eq. (15.18) or Eq. (15.19).

18.2 SHEAR
The methods described in Sections 16.2 and 16.3 are used to determine the shear stress distribution,
although, unlike the completely closed section case, shear loads must be applied through the shear
center of the combined section; otherwise, shear stresses of the type described in Section 17.2 due to
torsion will arise. Where shear loads do not act through the shear center, its position must be found and
the loading system replaced by shear loads acting through the shear center together with a torque; the
two loading cases are then analyzed separately. Again, we assume that the cross section of the beam
remains undistorted by the loading.

Fig. 18.1

Wing section comprising open and closed components.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00018-X 529
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Example 18.1
Determine the shear flow distribution in the beam section shown in Fig. 18.2, when it is subjected
to a shear load in its vertical plane of symmetry. The thickness of the walls of the section is 2mm
throughout.

The centroid of area C lies on the axis of symmetry at some distance ȳ from the upper surface of the
beam section. Taking moments of area about this upper surface

(4× 100× 2+ 4× 200× 2)ȳ= 2× 100× 2× 50+ 2× 200× 2× 100+ 200× 2× 200
which gives ȳ= 75mm.
The second moment of area of the section about Cx is given by

Ixx = 2
(
2× 1003
12

+ 2× 100× 252
)

+ 400× 2× 752+ 200× 2× 1252

+ 2
(
2× 2003
12

+ 2× 200× 252
)

that is,

Ixx = 14.5× 106mm4

Fig. 18.2

Beam section of Example 18.1.
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The section is symmetrical about Cy so that Ixy = 0, and since Sx = 0, the shear flow distribution in the
closed section 3456 is, from Eq. (16.15),

qs = − Sy
Ixx

s∫
0

tyds+ qs,0 (i)

Also, the shear load is applied through the shear center of the complete section—that is, along the axis
of symmetry—so that in the open portions 123 and 678 the shear flow distribution is, from Eq. (16.14),

qs = − Sy
Ixx

s∫
0

tyds (ii)

We note that the shear flow is zero at the points 1 and 8, and therefore the analysis may conveniently,
though not necessarily, begin at either of these points. Thus, referring to Fig. 18.2,

q12 = − 100× 103
14.5× 106

s1∫
0

2(−25+ s1)ds1

that is,

q12 = −69.0× 10−4(−50s1+ s21) (iii)

from which q2 = −34.5N/mm.
Examination of Eq. (iii) shows that q12 is initially positive and changes sign when s1 = 50mm.

Further, q12 has a turning value (dq12/ds1 = 0) at s1 = 25mm of 4.3N/mm. In the wall 23,

q23 = −69.0× 10−4
s2∫
0

2× 75ds2− 34.5

that is,

q23 = −1.04s2− 34.5 (iv)

Hence, q23 varies linearly from a value of −34.5N/mm at 2 to −138.5N/mm at 3 in the wall 23.
The analysis of the open part of the beam section is now complete, since the shear flow distribution

in the walls 67 and 78 follows from symmetry. To determine the shear flow distribution in the closed
part of the section, we must use the method described in Section 16.3, in which the line of action of the
shear load is known. Thus, we “cut” the closed part of the section at some convenient point, obtain the
qb or “open section” shear flows for the complete section, and then take moments as in Eqs. (16.17) or
(16.18). However, in this case, we may use the symmetry of the section and loading to deduce that the
final value of shear flow must be zero at the midpoints of the walls 36 and 45—that is, qs = qs,0 = 0 at
these points. Hence,

q03 = −69.0× 10−4
s3∫
0

2× 75ds3
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so that
q03 = −1.04s3 (v)

and q3 = −104N/mm in the wall 03. It follows that for equilibrium of shear flows at 3, q3, in the wall
34, must be equal to −138.5−104= −242.5N/mm. Hence,

q34 = −69.0× 10−4
s4∫
0

2(75− s4)ds4− 242.5

which gives
q34 = −1.04s4+ 69.0× 10−4s24− 242.5 (vi)

Examination of Eq. (vi) shows that q34 has a maximum value of −281.7N/mm at s4 = 75mm; also,
q4 = −172.5N/mm. Finally, the distribution of shear flow in the wall 94 is given by

q94 = −69.0× 10−4
s5∫
0

2(−125)ds5

that is,

q94 = 1.73s5 (vii)

The complete distribution is shown in Fig. 18.3.

Fig. 18.3

Shear flow distribution in beam of Example 18.1 (all shear flows in N/mm).
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18.3 TORSION
Generally, in the torsion of composite sections, the closed portion is dominant, since its torsional stiffness
is far greater than that of the attached open section portion which may therefore be frequently ignored
in the calculation of torsional stiffness; shear stresses should, however, be checked in this part of the
section.

Example 18.2
Find the angle of twist per unit length in the wing whose cross section is shown in Fig. 18.4 when it is
subjected to a torque of 10kNm. Find also the maximum shear stress in the section.G= 25000N/mm2.
Wall 12 (outer)=900mm. Nose cell area=20000mm2.
It may be assumed, in a simplified approach, that the torsional rigidity GJ of the complete section is

the sum of the torsional rigidities of the open and closed portions. For the closed portion, the torsional
rigidity is, from Eq. (17.4),

(GJ)cl = 4A2G∮
ds/t

= 4× 200002× 25000
(900+ 300)/1.5

which gives

(GJ)cl = 5000× 107Nmm2

The torsional rigidity of the open portion is found using Eq. (17.11), thus

(GJ)op = G
∑ st3

3
= 25000× 900× 23

3

that is,

(GJ)op = 6× 107Nmm2

Fig. 18.4

Wing section of Example 18.2.
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The torsional rigidity of the complete section is then

GJ = 5000× 107+ 6× 107 = 5006× 107Nmm2

In all unrestrained torsion problems, the torque is related to the rate of twist by the expression

T = GJ dθ
dz

The angle of twist per unit length is therefore given by

dθ

dz
= T

GJ
= 10× 106
5006× 107 = 0.0002rad/mm

Substituting for T in Eq. (17.1) from Eq. (17.4), we obtain the shear flow in the closed section. Thus,

qcl = (GJ)cl
2A

dθ

dz
= 5000× 107
2× 20000 × 0.0002

from which

qcl = 250N/mm

The maximum shear stress in the closed section is then 250/1.5= 166.7N/mm2.
In the open portion of the section, the maximum shear stress is obtained directly from Eq. (17.10)

and is

τmax,op = 25000× 2× 0.0002= 10N/mm2

It can be seen from the above that in terms of strength and stiffness, the closed portion of thewing section
dominates. This dominance may be used to determine the warping distribution. Having first found the
position of the center of twist (the shear center), the warping of the closed portion is calculated using
the method described in Section 17.1. The warping in the walls 13 and 34 is then determined using
Eq. (17.19), in which the origin for the swept area AR is taken at the point 1 and the value of warping
is that previously calculated for the closed portion at 1.

Problems
P.18.1 The beam section of Example 18.1 (see Fig. 18.2) is subjected to a bending moment in a vertical plane of
20kNm. Calculate the maximum direct stress in the cross section of the beam.

Ans. 172.5N/mm2.

P.18.2 A wing box has the cross section shown diagrammatically in Fig. P.18.2 and supports a shear load of 100
kN in its vertical plane of symmetry. Calculate the shear stress at the midpoint of the web 36 if the thickness of all
walls is 2mm.

Ans. 89.7N/mm2.
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Fig. P.18.2

P.18.3 If the wing box of P.18.2 is subjected to a torque of 100kNm, calculate the rate of twist of the section and
the maximum shear stress. The shear modulus G is 25000N/mm2.

Ans. 18.5×10−6 rad/mm, 170N/mm2.
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CHAPTER

19Structural Idealization

So far we have been concernedwith relatively uncomplicated structural sectionswhich in practicewould
be formed from thin plate or by the extrusion process. While these sections exist as structural members
in their own right, they are frequently used, as we saw in Chapter 11, to stiffen more complex structural
shapes such as fuselages, wings, and tail surfaces. Thus, a two-spar wing section could take the form
shown in Fig. 19.1, in which Z-section stringers are used to stiffen the thin skin while angle sections
form the spar flanges. Clearly, the analysis of a section of this type would be complicated and tedious
unless some simplifying assumptions are made. Generally, the number and nature of these simplifying
assumptions determine the accuracy and the degree of complexity of the analysis; the more complex
the analysis, the greater the accuracy obtained. The degree of simplification introduced is governed by
the particular situation surrounding the problem. For a preliminary investigation, speed and simplicity
are often of greater importance than extreme accuracy; on the other hand, a final solution must be as
exact as circumstances allow.
Complex structural sectionsmay be idealized into simpler “mechanical model” formswhich behave,

under given loading conditions, in the same, or very nearly the same, way as the actual structure. We
shall see, however, that different models of the same structure are required to simulate actual behavior
under different systems of loading.

19.1 PRINCIPLE
In the wing section of Fig. 19.1, the stringers and spar flanges have small cross-sectional dimensions
compared with the complete section. Therefore, the variation in stress over the cross section of a stringer

Fig. 19.1

Typical wing section.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
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Fig. 19.2

Idealization of a wing section.

due to, say, bending of the wing would be small. Furthermore, the difference between the distances of
the stringer centroids and the adjacent skin from the wing section axis is small. It would be reasonable
to assume, therefore, that the direct stress is constant over the stringer cross sections.We could therefore
replace the stringers and spar flanges by concentrations of area, known as booms, over which the direct
stress is constant and which are located along the midline of the skin, as shown in Fig. 19.2. In wing
and fuselage sections of the type shown in Fig. 19.1, the stringers and spar flanges carry most of the
direct stresses, while the skin is mainly effective in resisting shear stresses, although it also carries some
of the direct stresses. The idealization shown in Fig. 19.2 may therefore be taken a stage further by
assuming that all direct stresses are carried by the booms, while the skin is effective only in shear. The
direct stress-carrying capacity of the skin may be allowed for by increasing each boom area by an area
equivalent to the direct stress-carrying capacity of the adjacent skin panels. The calculation of these
equivalent areas will generally depend on an initial assumption as to the form of the distribution of
direct stress in a boom/skin panel.

19.2 IDEALIZATION OF A PANEL
Suppose that we wish to idealize the panel of Fig. 19.3(a) into a combination of direct stress-carrying
booms and shear-stress-only-carrying skin, as shown in Fig. 19.3(b). In Fig. 19.3(a), the direct stress-
carrying thickness tD of the skin is equal to its actual thickness t, while in Fig. 19.3(b), tD=0. Suppose
also that the direct stress distribution in the actual panel varies linearly from an unknown value σ1 to
an unknown value σ2. Clearly the analysis should predict the extremes of stress σ1 and σ2, although
the distribution of direct stress is obviously lost. Since the loading producing the direct stresses in the
actual and idealized panels must be the same, we can equate moments to obtain expressions for the
boom areas B1 and B2. Thus, taking moments about the right-hand edge of each panel,

σ2tD
b2

2
+ 1

2
(σ1− σ2)tDb

2

3
b= σ1B1b

from which

B1 = tDb

6

(
2+ σ2

σ1

)
(19.1)
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Fig. 19.3

Idealization of a panel.

Similarly,

B2 = tDb

6

(
2+ σ1

σ2

)
(19.2)

In Eqs. (19.1) and (19.2), the ratio of σ1 to σ2, if not known, may frequently be assumed.
The direct stress distribution in Fig. 19.3(a) is caused by a combination of axial load and bending

moment. For axial load only σ1/σ2=1 and B1=B2= tDb/2; for a pure bending moment, σ1/σ2=−1
andB1=B2= tDb/6. Thus, different idealizations of the same structure are required for different loading
conditions.

Example 19.1
Part of a wing section is in the form of the two-cell box shown in Fig. 19.4(a), in which the vertical spars
are connected to the wing skin through angle sections, all having a cross-sectional area of 300mm2.
Idealize the section into an arrangement of direct stress-carrying booms and shear-stress-only-carrying
panels suitable for resisting bending moments in a vertical plane. Position the booms at the spar/skin
junctions.

Fig. 19.4

Idealization of a wing section.
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The idealized section is shown in Fig. 19.4(b), in which, from symmetry, B1=B6,B2=B5,B3=B4.
Since the section is required to resist bending moments in a vertical plane, the direct stress at any point
in the actual wing section is directly proportional to its distance from the horizontal axis of symmetry.
Further, the distribution of direct stress in all the panels will be linear so that either of Eq. (19.1) or of
Eq. (19.2) may be used. We note that in addition to contributions from adjacent panels, the boom areas
include the existing spar flanges. Hence,

B1 = 300+ 3.0× 400
6

(
2+ σ6

σ1

)
+ 2.0× 600

6

(
2+ σ2

σ1

)

or

B1 = 300+ 3.0× 400
6

(2− 1) + 2.0× 600
6

(
2+ 150

200

)

which gives

B1(= B6) = 1050mm2

Also,

B2 = 2× 300+ 2.0× 600
6

(
2+ σ1

σ2

)
+ 2.5× 300

6

(
2+ σ5

σ2

)
+ 1.5× 600

6

(
2+ σ3

σ2

)

that is,

B2 = 2× 300+ 2.0× 600
6

(
2+ 200

150

)
+ 2.5× 300

6
(2− 1) + 1.5× 600

6

(
2+ 100

150

)

from which

B2(=B5) = 1791.7mm2

Finally,

B3 = 300+ 1.5× 600
6

(
2+ σ2

σ3

)
+ 2.0× 200

6

(
2+ σ4

σ3

)

that is,

B3 = 300+ 1.5× 600
6

(
2+ 150

100

)
+ 2.0× 200

6
(2− 1)

so that

B3(=B4) = 891.7mm2
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19.3 EFFECT OF IDEALIZATION ON THE ANALYSIS OF OPEN
AND CLOSED SECTION BEAMS

The addition of direct stress-carrying booms to open and closed section beams will clearly modify the
analyses presented in Chapters 15 through 17. Before considering individual cases, we shall discuss
the implications of structural idealization. Generally, in any idealization, different loading conditions
require different idealizations of the same structure. In Example 19.1, the loading is applied in a vertical
plane. If, however, the loading had been applied in a horizontal plane, the assumed stress distribution
in the panels of the section would have been different, resulting in different values of boom area.
Suppose that an open or closed section beam is subjected to given bending or shear loads and

that the required idealization has been completed. The analysis of such sections usually involves the
determination of the neutral axis position and the calculation of sectional properties. The position of
the neutral axis is derived from the condition that the resultant load on the beam cross section is zero,
that is, ∫

A

σz dA= 0 (see Eq. (15.3))

The area A in this expression is clearly the direct stress-carrying area. It follows that the centroid of
the cross section is the centroid of the direct stress-carrying area of the section, depending on the
degree and method of idealization. The sectional properties, Ixx , and so on, must also refer to the direct
stress-carrying area.

19.3.1 Bending of Open and Closed Section Beams
The analysis presented in Sections 15.1 and 15.2 applies, and the direct stress distribution is given
by any of Eqs. (15.9), (15.18), or (15.19), depending on the beam section being investigated. In these
equations, the coordinates (x, y) of points in the cross section are referred to axes having their origin
at the centroid of the direct stress-carrying area. Furthermore, the section properties Ixx, Iyy, and Ixy are
calculated for the direct stress-carrying area only.
In the case where the beam cross section has been completely idealized into direct stress-carrying

booms and shear-stress-only-carrying panels, the direct stress distribution consists of a series of direct
stresses concentrated at the centroids of the booms.

Example 19.2
The fuselage section shown in Fig. 19.5 is subjected to a bending moment of 100kNm applied in
the vertical plane of symmetry. If the section has been completely idealized into a combination of
direct stress-carrying booms and shear-stress-only-carrying panels, determine the direct stress in each
boom.

The section has Cy as an axis of symmetry and resists a bending moment Mx=100kNm.
Equation (15.18) therefore reduces to

σz = Mx
Ixx
y (i)
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Fig. 19.5

Idealized fuselage section of Example 19.2.

The origin of axes Cxy coincides with the position of the centroid of the direct stress-carrying area,
which, in this case, is the centroid of the boom areas. Thus, taking moments of area about boom 9,

(6× 640+ 6× 600+ 2× 620+ 2× 850)y
= 640× 1200+ 2× 600× 1140+ 2× 600× 960+ 2× 600× 768

+ 2× 620× 565+ 2× 640× 336+ 2× 640× 144+ 2× 850× 38
which gives

y= 540mm
The solution is now completed in Table 19.1
From column ④

Ixx = 1854× 106mm4

and column ⑤ is completed using Eq. (i).

19.3.2 Shear of Open Section Beams
The derivation of Eq. (16.14) for the shear flow distribution in the cross section of an open section
beam is based on the equilibrium equation (16.2). The thickness t in this equation refers to the direct
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Table 19.1

① ② ③ ④ ⑤

Boom y(mm) B(mm2) �Ixx = By2(mm4) σ z (N/mm2)

1 +660 640 278×106 35.6
2 +600 600 216×106 32.3
3 +420 600 106×106 22.6
4 +228 600 31×106 12.3
5 +25 620 0.4×106 1.3
6 −204 640 27×106 −11.0
7 −396 640 100×106 −21.4
8 −502 850 214×106 −27.0
9 −540 640 187×106 −29.0

Fig. 19.6

(a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom element.

stress-carrying thickness tD of the skin. Equation (16.14) may therefore be rewritten as

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

) s∫
0

tDxds−
(
SyIyy− SxIxy
IxxIyy− I2xy

) s∫
0

tDyds (19.3)

in which tD= t if the skin is fully effective in carrying direct stress or tD=0 if the skin is assumed to
carry only shear stresses. Again the section properties in Eq. (19.3) refer to the direct stress-carrying
area of the section, since they are those which feature in Eqs. (15.18) and (15.19).
Equation (19.3) makes no provision for the effects of booms, which cause discontinuities in the skin

and therefore interrupt the shear flow. Consider the equilibrium of the rth boom in the elemental length
of beam shown in Fig. 19.6(a) which carries shear loads Sx and Sy acting through its shear center S.
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These shear loads produce direct stresses due to bending in the booms and skin and shear stresses in
the skin. Suppose that the shear flows in the skin adjacent to the rth boom of cross-sectional area Br are
q1 and q2. Then, from Fig. 19.6(b),(

σz + ∂σz

∂z
δz

)
Br − σzBr + q2δz− q1δz = 0

which simplifies to

q2− q1 = −∂σz

∂z
Br (19.4)

Substituting for σz in Eq. (19.4) from (15.18), we have

q2− q1 = −
[

(∂My/∂z)Ixx − (∂Mx/∂z)Ixy
IxxIyy− I2xy

]
Brxr

−
[

(∂Mx/∂z)Iyy− (∂My/∂z)Ixy
IxxIyy− I2xy

]
Bryr

or, using the relationships of Eqs. (15.23) and (15.24),

q2− q1 = −
(
SxIxx − SyIxy
IxxIyy− I2xy

)
Brxr −

(
SyIyy− SxIxy
IxxIyy− I2xy

)
Bryr (19.5)

Equation (19.5) gives the change in shear flow induced by a boom which itself is subjected to a direct
load (σzBr). Each time a boom is encountered, the shear flow is incremented by this amount so that if,
at any distance s around the profile of the section, n booms have been passed, the shear flow at the point
is given by

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDxds+
n∑
r=1
Brxr

⎞
⎠

−
(
SyIyy− SxIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDyds+
n∑
r=1
Bryr

⎞
⎠

(19.6)

Example 19.3
Calculate the shear flow distribution in the channel section shown in Fig. 19.7 produced by a ver-
tical shear load of 4.8kN acting through its shear center. Assume that the walls of the section are
only effective in resisting shear stresses, while the booms, each of area 300mm2, carry all the direct
stresses.
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Fig. 19.7

Idealized channel section of Example 19.3.

The effective direct stress-carrying thickness tD of the walls of the section is zero so that the centroid
of area and the section properties refer to the boom areas only. Since Cx (and Cy as far as the boom
areas are concerned) is an axis of symmetry, Ixy=0; also, Sx=0 and Eq. (19.6) thereby reduces to

qs = − Sy
Ixx

n∑
r=1
Bryr (i)

in which Ixx=4×300×2002=48×106mm4. Substituting the values of Sy and Ixx in Eq. (i) gives

qs = −4.8× 103
48× 106

n∑
r=1
Bryr = −10−4

n∑
r=1
Bryr (ii)

At the outside of boom 1, qs=0. As boom 1 is crossed, the shear flow changes by an amount given by
�q1 = −10−4× 300× 200= −6N/mm

Hence, q12=−6N/mm, since, from Eq. (i), it can be seen that no further changes in shear flow occur
until the next boom (2) is crossed. Hence,

q23 = −6− 10−4× 300× 200= −12N/mm
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Similarly,

q34 = −12− 10−4× 300× (−200) = −6N/mm

while, finally, at the outside of boom 4, the shear flow is

−6− 10−4× 300× (−200) = 0

as expected. The complete shear flow distribution is shown in Fig. 19.8.
It can be seen from Eq. (i) in Example 19.3 that the analysis of a beam section which has been

idealized into a combination of direct stress-carrying booms and shear-stress-only-carrying skin gives
constant values of the shear flow in the skin between the booms; the actual distribution of shear flows
is therefore lost. What remains is in fact the average of the shear flow, as can be seen by referring to
Example 19.3. Analysis of the unidealized channel section would result in a parabolic distribution of
shear flow in the web 23 whose resultant is statically equivalent to the externally applied shear load of
4.8kN. In Fig. 19.8 the resultant of the constant shear flow in the web 23 is 12×400=4800N=4.8kN.
It follows that this constant value of shear flow is the average of the parabolically distributed shear flows
in the unidealized section.
The result, from the idealization of a beam section, of a constant shear flow between booms may

be used to advantage in parts of the analysis. Suppose that the curved web 12 in Fig. 19.9 has booms
at its extremities and that the shear flow q12 in the web is constant. The shear force on an element δs
of the web is q12δs, whose components horizontally and vertically are q12δscosφ and q12δs sinφ. The
resultant, parallel to the x axis, Sx , of q12 is therefore given by

Sx =
2∫
1

q12 cosφ ds

Fig. 19.8

Shear flow in channel section of Example 19.3.
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Fig. 19.9

Curved web with constant shear flow.

or

Sx = q12
2∫
1

cosφ ds

which, from Fig. 19.9, may be written as

Sx = q12
2∫
1

dx = q12(x2− x1) (19.7)

Similarly, the resultant of q12 parallel to the y axis is

Sy = q12( y2− y1) (19.8)

Thus, the resultant, in a given direction, of a constant shear flow acting on a web is the value of the
shear flow multiplied by the projection on that direction of the web.
The resultant shear force S on the web of Fig. 19.9 is

S =
√
S2x + S2y = q12

√
(x2− x1)2+ ( y2− y1)2

that is,

S = q12L12 (19.9)
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Therefore, the resultant shear force acting on the web is the product of the shear flow and the length of
the straight line joining the ends of the web; clearly, the direction of the resultant is parallel to this line.
The moment Mq produced by the shear flow q12 about any point O in the plane of the web is, from

Fig. 19.10,

Mq =
2∫
1

q12pds= q12
2∫
1

2dA

or

Mq = 2Aq12 (19.10)

in which A is the area enclosed by the web and the lines joining the ends of the web to the point O. This
result may be used to determine the distance of the line of action of the resultant shear force from any
point. From Fig. 19.10,

Se= 2Aq12
from which

e= 2A

S
q12

Substituting for q12 from Eq. (19.9) gives

e= 2A

L12

Fig. 19.10

Moment produced by a constant shear flow.
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19.3.3 Shear Loading of Closed Section Beams
Arguments identical to those in the shear of open section beams apply in this case. Thus, the shear flow
at any point around the cross section of a closed section beam comprising booms and skin of direct
stress-carrying thickness tD is, by comparing Eqs. (19.6) and (16.15),

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDxds+
n∑
r=1
Brxr

⎞
⎠

−
(
SyIyy− SxIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDyds+
n∑
r=1
Bryr

⎞
⎠+ qs,0

(19.11)

Note that the zero value of the “basic” or “open section” shear flow at the “cut” in a skin for which
tD=0 extends from the “cut” to the adjacent booms.

Example 19.4
The thin-walled single cell beam shown in Fig. 19.11 has been idealized into a combination of direct
stress-carrying booms and shear-stress-only-carrying walls. If the section supports a vertical shear load
of 10kN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around
the section.

Boom areas: B1=B8=200mm2, B2=B7=250mm2
B3=B6=400mm2, B4= B5=100mm2

The centroid of the direct stress-carrying area lies on the horizontal axis of symmetry so that Ixy=0.
Also, since tD=0 and only a vertical shear load is applied.

Fig. 19.11

Closed section of beam of Example 19.4.
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Eq. (19.11) reduces to

qs = − Sy
Ixx

n∑
r=1
Bryr + qs,0 (i)

in which

Ixx = 2(200× 302+ 250× 1002+ 400× 1002+ 100× 502) = 13.86× 106mm4

Equation (i) then becomes

qs = − 10× 103
13.86× 106

n∑
r=1
Bryr + qs,0

that is,

qs = −7.22× 10−4
n∑
r=1
Bryr + qs,0 (ii)

“Cutting” the beam section in the wall 23 (any wall may be chosen) and calculating the “basic” shear
flow distribution qb from the first term on the right-hand side of Eq. (ii), we have

qb,23 = 0
qb,34 = −7.22× 10−4(400× 100) = −28.9N/mm

qb,45 = −28.9− 7.22× 10−4(100× 50) = −32.5N/mm

qb,56 = qb,34 = −28.9N/mm (by symmetry)

qb,67 = qb,23 = 0 (by symmetry)
qb,21 = −7.22× 10−4(250× 100) = −18.1N/mm

qb,18 = −18.1− 7.22× 10−4(200× 30) = −22.4N/mm

qb,87 = qb,21 = −18.1N/mm (by symmetry)

Taking moments about the intersection of the line of action of the shear load and the horizontal axis of
symmetry and referring to the results of Eqs. (19.7) and (19.8), we have, from Eq. (16.18),

0= [qb,81× 60× 480+ 2qb,12(240× 100+ 70× 240) + 2qb,23× 240× 100
− 2qb,43× 120× 100− qb,54× 100× 120]+ 2× 97200qs,0

Substituting the preceding values of qb in this equation gives

qs,0 = −5.4N/mm

the negative sign indicating that qs,0 acts in a clockwise sense.
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Fig. 19.12

Shear flow distribution N/mm in walls of the beam section of Example 19.4.

In any wall, the final shear flow is given by qs=qb+qs,0 so that
q21 = −18.1+ 5.4= −12.7N/mm = q87
q23 = −5.4N/mm = q67
q34 = −34.3N/mm = q56
q45 = −37.9N/mm

and

q81 = 17.0N/mm

giving the shear flow distribution shown in Fig. 19.12.

19.3.4 Alternative Method for the Calculation of Shear Flow Distribution
Equation (19.4) may be rewritten in the form

q2− q1 = ∂Pr
∂z

(19.12)

in which Pr is the direct load in the rth boom. This form of the equation suggests an alternative approach
to the determination of the effect of booms on the calculation of shear flow distributions in open and
closed section beams.
Let us suppose that the boom load varies linearly with z. This will be the case for a length of beam

over which the shear force is constant. Equation (19.12) then becomes

q2− q1 = −�Pr (19.13)

inwhich�Pr is the change in boom load over unit length of the rth boom.�Pr may be calculated by first
determining the change in bending moment between two sections of a beam a unit distance apart and
then calculating the corresponding change in boom stress using either of Eq. (15.18) or of Eq. (15.19);
the change in boom load follows by multiplying the change in boom stress by the boom area Br . Note
that the section properties contained in Eqs. (15.18) and (15.19) refer to the direct stress-carrying area
of the beam section. In cases where the shear force is not constant over the unit length of beam, the
method is approximate.
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We shall illustrate the method by applying it to Example 19.3. In Fig. 19.7, the shear load of 4.8 kN
is applied to the face of the section which is seen when a view is taken along the z axis toward the
origin. Thus, when considering unit length of the beam, we must ensure that this situation is unchanged.
Figure 19.13 shows a unit (1mm, say) length of beam. The change in bending moment between the
front and rear faces of the length of beam is 4.8×1kNmm, which produces a change in boom load
given by (see Eq. (15.18))

�Pr = 4.8× 103× 200
48× 106 × 300= 6N

The change in boom load is compressive in booms 1 and 2 and tensile in booms 3 and 4.
Equation (19.12), and hence Eq. (19.13), is based on the tensile load in a boom increasing with

increasing z. If the tensile load had increased with decreasing z, the right-hand side of these equations
would have been positive. It follows that in the case where a compressive load increases with decreasing
z, as for booms 1 and 2 in Fig. 19.13, the right-hand side is negative; similarly for booms 3 and 4, the
right-hand side is positive. Thus,

q12 = −6N/mm

q23 = −6+ q12 = −12N/mm

and

q34 = +6+ q23 = −6N/mm

Fig. 19.13

Alternative solution to Example 19.3.
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giving the same solution as before. Note that if the unit length of beam had been taken to be 1m, the
solution would have been q12=−6000N/m, q23=−12 000N/m, and q34=−6000N/m.

19.3.5 Torsion of Open and Closed Section Beams
No direct stresses are developed in either open or closed section beams subjected to a pure torque unless
axial constraints are present. The shear stress distribution is therefore unaffected by the presence of
booms, and the analyses presented in Chapter 17 apply.

19.4 DEFLECTION OF OPEN AND CLOSED SECTION BEAMS
Bending, shear, and torsional deflections of thin-walled beams are readily obtained by application of
the unit load method described in Section 5.5. The displacement in a given direction due to torsion is
given directly by the last of Eqs. (5.21), thus,

�T =
∫
L

T0T1
GJ

dz (19.14)

where J , the torsion constant, depends on the type of beam under consideration. For an open section
beam, J is given by either of Eqs. (17.11), whereas in the case of a closed section beam, J=4A2/(∮ ds/t)
(Eq. (17.4)) for a constant shear modulus.
Expressions for the bending and shear displacements of unsymmetrical thin-walled beams may also

be determined by the unit load method. They are complex for the general case and are most easily
derived from first principles by considering the complementary energy of the elastic body in terms of
stresses and strains rather than loads and displacements. In Chapter 5, we observed that the theorem of
the principle of the stationary value of the total complementary energy of an elastic system is equivalent
to the application of the principle of virtual work where virtual forces act through real displacements.We
may therefore specify that in our expression for total complementary energy, the displacements are the
actual displacements produced by the applied loads, while the virtual force system is the unit load.
Considering deflections due to bending, we see, from Eq. (5.6), that the increment in total

complementary energy due to the application of a virtual unit load is

−
∫
L

⎛
⎝∫
A

σz,1εz,0 dA

⎞
⎠d z+ 1�M

where σz,1 is the direct bending stress at any point in the beam cross section corresponding to the unit
load and εz,0 is the strain at the point produced by the actual loading system. Further, �M is the actual
displacement due to bending at the point of application and in the direction of the unit load. Since the
system is in equilibrium under the action of the unit load, the above expression must equal zero (see
Eq. (5.6)). Hence,

�M =
∫
L

⎛
⎝∫
A

σz,1εz,0 dA

⎞
⎠d z (19.15)
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From Eq. (15.18) and the third of Eqs. (1.42),

σz,1 =
(
My,1Ixx −Mx,1Ixy
IxxIyy− I2xy

)
x+

(
Mx,1Iyy−My,1Ixy
IxxIyy− I2xy

)
y

εz,0 = 1

E

[(
My,0Ixx −Mx,0Ixy
IxxIyy− I2xy

)
x+

(
Mx,0Iyy−My,0Ixy
IxxIyy− I2xy

)
y

]

where the suffixes 1 and 0 refer to the unit and actual loading systems, and x, y are the coordinates of
any point in the cross section referred to a centroidal system of axes. Substituting for σz,1 and εz,0 in
Eq. (19.15) and remembering that

∫
A x
2 dA= Iyy,

∫
A y
2 dA= Ixx , and

∫
A xydA= Ixy, we have

�M = 1

E(IxxIyy− I2xy)2
∫
L

{
(My,1Ixx −Mx,1Ixy)(My,0Ixx −Mx,0Ixy)Iyy

+ (Mx,1Iyy−My,1Ixy)(Mx,0Iyy−My,0Ixy)Ixx
+ [(My,1Ixx −Mx,1Ixy)(Mx,0Iyy−My,0Ixy)
+ (Mx,1Iyy−My,1Ixy)(My,0Ixx −Mx,0Ixy)]Ixy

}
dz

(19.16)

For a section having either x or y axis as an axis of symmetry, Ixy=0, and Eq. (19.16) reduces to

�M = 1

E

∫
L

(
My,1My,0
Iyy

+ Mx,1Mx,0
Ixx

)
dz (19.17)

The derivation of an expression for the shear deflection of thin-walled sections by the unit load method
is achieved in a similar manner. By comparing Eq. (19.15), we deduce that the deflection �S , due to
shear of a thin-walled open or closed section beam of thickness t, is given by

�S =
∫
L

⎛
⎝ ∫
sect

τ1γ0t ds

⎞
⎠dz (19.18)

where τ1 is the shear stress at an arbitrary point s around the section produced by a unit load applied
at the point and in the direction �S , and γ0 is the shear strain at the arbitrary point corresponding to
the actual loading system. The integral in parentheses is taken over all the walls of the beam. In fact,
both the applied and unit shear loads must act through the shear center of the cross section; otherwise
additional torsional displacements occur. Where shear loads act at other points, these must be replaced
by shear loads at the shear center plus a torque. The thickness t is the actual skin thickness and may
vary around the cross section but is assumed to be constant along the length of the beam. Rewriting
Eq. (19.18) in terms of shear flows q1 and q0, we obtain

�S =
∫
L

⎛
⎝ ∫
sect

q0q1
Gt

ds

⎞
⎠dz (19.19)
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where again the suffixes refer to the actual and unit loading systems. In the cases of both open and closed
section beams, the general expressions for shear flow are long and are best evaluated before substituting
in Eq. (19.19). For an open section beam comprising booms and walls of direct stress-carrying thickness
tD, we have, from Eq. (19.6),

q0 =−
(
Sx,0Ixx − Sy,0Ixy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDxds+
n∑
r=1
Brxr

⎞
⎠

−
(
Sy,0Iyy− Sx,0Ixy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDyds+
n∑
r=1
Bryr

⎞
⎠

(19.20)

and

q1 =−
(
Sx,1Ixx − Sy,1Ixy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDxds+
n∑
r=1
Brxr

⎞
⎠

−
(
Sy,1Iyy− Sx,1Ixy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDyds+
n∑
r=1
Bryr

⎞
⎠

(19.21)

Similar expressions are obtained for a closed section beam from Eq. (19.11).

Example 19.5
Calculate the deflection of the free end of a cantilever 2000mm long having a channel section identical
to that in Example 19.3 and supporting a vertical, upward load of 4.8kN acting through the shear center
of the section. The effective direct stress-carrying thickness of the skin is zero, while its actual thickness
is 1mm. Young’s modulus E and the shear modulus G are 70000 and 30000N/mm2, respectively.

The section is doubly symmetrical (i.e., the direct stress-carrying area) and supports a vertical load
producing a vertical deflection. Thus, we apply a unit load through the shear center of the section at
the tip of the cantilever and in the same direction as the applied load. Since the load is applied through
the shear center, there is no twisting of the section, and the total deflection is given, from Eqs. (19.17),
(19.19), (19.20), and (19.21), by

� =
L∫
0

Mx,0Mx,1
EIxx

dz+
L∫
0

⎛
⎝ ∫
sect

q0q1
Gt

ds

⎞
⎠dz (i)

where Mx,0=−4.8×103(2000−z), Mx,1=−1(2000−z)

q0 = −4.8× 103
Ixx

n∑
r=1
Bryr q1 = − 1

Ixx

n∑
r=1
Bryr
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and z is measured from the built-in end of the cantilever. The actual shear flow distribution has been
calculated in Example 19.3. In this case, the q1 shear flows may be deduced from the actual distribution
shown in Fig. 19.8, that is,

q1 = q0/4.8× 103
Evaluating the bending deflection, we have

�M =
2000∫
0

4.8× 103(2000− z)2dz
70000× 48× 106 = 3.81mm

The shear deflection �S is given by

�S =
2000∫
0

1

30000× 1
[

1

4.8× 103 (6
2× 200+ 122× 400+ 62× 200)

]
dz

= 1.0mm
The total deflection � is then �M+�S=4.81mm in a vertical upward direction.

Problems
P.19.1 Idealize the box section shown in Fig. P.19.1 into an arrangement of direct stress-carrying booms positioned
at the four corners and panels which are assumed to carry only shear stresses. Hence, determine the distance of the
shear center from the left-hand web.

Ans. 225mm.

Fig. P.19.1

P.19.2 The beam section shown in Fig. P.19.2 has been idealized into an arrangement of direct stress-carrying
booms and shear-stress-only-carrying panels. If the beam section is subjected to a vertical shear load of 1495N
through its shear center, booms 1, 4, 5, and 8 each have an area of 200mm2, and booms 2, 3, 6, and 7 each have an
area of 250mm2, determine the shear flow distribution and the position of the shear center.
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Ans. Wall 12, 1.86N/mm; 43, 1.49N/mm; 32, 5.21N/mm; 27, 10.79N/mm; remaining distribution follows
from symmetry. 122mm to the left of the web 27.

Fig. P.19.2

P.19.3 Figure P.19.3 shows the cross section of a single cell, thin-walled beam with a horizontal axis of symmetry.
The direct stresses are carried by the booms B1 to B4, while the walls are effective only in carrying shear stresses.
Assuming that the basic theory of bending is applicable, calculate the position of the shear center S. The shear
modulus G is the same for all walls.

Cell area=135000mm2. Boom areas: B1=B4=450mm2, B2=B3=550mm2.
Ans. 197.2mm from vertical through booms 2 and 3.

Fig. P.19.3

Wall Length (mm) Thickness (mm)

12, 34 500 0.8
23 580 1.0
41 200 1.2

P.19.4 Find the position of the shear center of the rectangular four-boom beam section shown in Fig. P.19.4. The
booms carry only direct stresses, but the skin is fully effective in carrying both shear and direct stress. The area of
each boom is 100mm2.
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Ans. 142.5mm from side 23.

Fig. P.19.4

P.19.5 A uniform beam with the cross section shown in Fig. P.19.5(a) is supported and loaded as shown in
Fig. P.19.5(b). If the direct and shear stresses are given by the basic theory of bending, the direct stresses being
carried by the booms, and the shear stresses by the walls, calculate the vertical deflection at the ends of the
beam when the loads act through the shear centers of the end cross sections, allowing for the effect of shear
strains.

Fig. P.19.5

Take E=69000N/mm2 and G=26700N/mm2. Boom areas: 1, 3, 4, 6=650mm2, 2, 5 =1300mm2.
Ans. 3.4mm.

P.19.6 A cantilever, length, L, has a hollow cross section in the form of a doubly symmetric wedge as shown in
Fig. P.19.6. The chord line is of length c, wedge thickness is t, the length of a sloping side is a/2, and the wall
thickness is constant and equal to t0. Uniform pressure distributions of magnitudes shown act on the faces of the
wedge. Find the vertical deflection of point A due to this given loading. If G=0.4E, t/c=0.05, and L=2c, show
that this deflection is approximately 5600p0c2/Et0.
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Fig. P.19.6

P.19.7 A rectangular section thin-walled beam of length L and breadth 3b, depth b, and wall thickness t is built in
at one end (Fig. P.19.7). The upper surface of the beam is subjected to a pressure which varies linearly across the
breadth from a value p0 at edge AB to zero at edge CD. Thus, at any given value of x, the pressure is constant in
the z direction. Find the vertical deflection of point A.

Fig. P.19.7

Ans. p0L2(9L2/80Eb2+1609/2000G)/t.



This page intentionally left blank



CHAPTER

20Wing Spars and Box Beams

In Chapters 15 through 17, we established the basic theory for the analysis of open and closed section
thin-walled beams subjected to bending, shear, and torsional loads. In addition, in Chapter 19, we saw
how complex stringer stiffened sections could be idealized into sections more amenable to analysis. We
shall now extend this analysis to actual aircraft components, including, in this chapter, wing spars and
box beams. In subsequent chapters, we shall investigate the analysis of fuselages, wings, frames, and
ribs and consider the effects of cutouts in wings and fuselages.
Aircraft structural components are, as we saw in Chapter 11, complex, consisting usually of thin

sheets of metal stiffened by arrangements of stringers. These structures are highly redundant and require
some degree of simplification or idealization before they can be analyzed. The analysis presented here
is therefore approximate, and the degree of accuracy obtained depends on the number of simplifying
assumptions made. A further complication arises in that factors such as warping restraint, structural
and loading discontinuities, and shear lag significantly affect the analysis. Generally, a high degree of
accuracy can only be obtained by using computer-based techniques such as the finite element method
(see Chapter 6). However, the simpler, quicker, and cheaper approximate methods can be used to
advantage in the preliminary stages of design when several possible structural alternatives are being
investigated; they also provide an insight into the physical behavior of structures which computer-based
techniques do not.
Major aircraft structural components such as wings and fuselages are usually tapered along their

lengths for greater structural efficiency. Thus, wing sections are reduced both chordwise and in depth
along the wing span toward the tip and fuselage sections aft of the passenger cabin taper to provide a
more efficient aerodynamic and structural shape.
The analysis of open and closed section beams presented in Chapters 15 through 17 assumes that the

beam sections are uniform. The effect of taper on the prediction of direct stresses produced by bending
is minimal if the taper is small and the section properties are calculated at the particular section being
considered; Eqs. (15.18) through (15.22) may therefore be used with reasonable accuracy. On the other
hand, the calculation of shear stresses in beam webs can be significantly affected by taper.

20.1 TAPERED WING SPAR
Consider first the simple case of a beam—for example, a wing spar—positioned in the yz plane and
comprising two flanges and a web; an elemental length δz of the beam is shown in Fig. 20.1. At
the section z, the beam is subjected to a positive bending moment Mx and a positive shear force Sy.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00020-8 561
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Fig. 20.1

Effect of taper on beam analysis.

The bending moment resultants Pz,1 and Pz,2 are parallel to the z axis of the beam. For a beam in
which the flanges are assumed to resist all the direct stresses, Pz,1=Mx/h and Pz,2=−Mx/h. In the case
where the web is assumed to be fully effective in resisting direct stress, Pz,1 and Pz,2 are determined by
multiplying the direct stresses σz,1 and σz,2 found using Eqs. (15.18) or (15.19) by the flange areas B1
and B2. Pz,1 and Pz,2 are the components in the z direction of the axial loads P1 and P2 in the flanges.
These have components Py,1 and Py,2 parallel to the y axis given by

Py,1 = Pz,1 δy1
δz

Py,2 = −Pz,2 δy2
δz

(20.1)

in which, for the direction of taper shown, δy2 is negative. The axial load in flange ① is given by

P1 = (P2z,1+P2y,1)1/2

Substituting for Py,1 from Eq. (20.1), we have

P1 = Pz,1 (δz
2+ δy21)

1/2

δz
= Pz,1
cosα1

(20.2)

Similarly,

P2 = Pz,2
cosα2

(20.3)

The internal shear force Sy comprises the resultant Sy,w of the web shear flows together with the vertical
components of P1 and P2. Thus,

Sy = Sy,w+Py,1−Py,2
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or

Sy = Sy,w+Pz,1 δy1
δz

+Pz,2 δy2
δz

(20.4)

so that

Sy,w = Sy−Pz,1 δy1
δz

−Pz,2 δy2
δz

(20.5)

Again we note that δy2 in Eqs. (20.4) and (20.5) is negative. Equation (20.5) may be used to determine
the shear flow distribution in the web. For a completely idealized beam, the web shear flow is constant
through the depth and is given by Sy,w/h. For a beam in which the web is fully effective in resisting
direct stresses, the web shear flow distribution is found using Eq. (19.6), in which Sy is replaced by Sy,w
and which, for the beam of Fig. 20.1, would simplify to

qs = −Sy,w
Ixx

⎛
⎝ s∫
0

tDyds+B1y1
⎞
⎠ (20.6)

or

qs = −Sy,w
Ixx

⎛
⎝ s∫
0

tDyds+B2y2
⎞
⎠ (20.7)

Example 20.1
Determine the shear flow distribution in the web of the tapered beam shown in Fig. 20.2, at a section
midway along its length. The web of the beam has a thickness of 2mm and is fully effective in resisting

Fig. 20.2

Tapered beam of this example.
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direct stress. The beam tapers symmetrically about its horizontal centroidal axis, and the cross-sectional
area of each flange is 400mm2.

The internal bending moment and shear load at the section AA produced by the externally applied
load are, respectively,

Mx = 20× 1= 20kNm Sy = −20kN
The direct stresses parallel to the z axis in the flanges at this section are obtained from either Eq. (15.18)
or Eq. (15.19), in which My=0 and Ixy=0. Thus, from Eq. (15.18),

σz = Mxy

Ixx
(i)

in which

Ixx = 2× 400× 1502+ 2× 3003/12
that is,

Ixx = 22.5× 106mm4

Hence,

σz,1 = −σz,2 = 20× 106× 150
22.5× 106 = 133.3N/mm2

The components parallel to the z axis of the axial loads in the flanges are therefore

Pz,1 = −Pz,2 = 133.3× 400= 53320N
The shear load resisted by the beam web is then, from Eq. (20.5),

Sy,w = −20× 103− 53320δy1
δz

+ 53320δy2
δz

in which, from Figs. 20.1 and 20.2, we see that

δy1
δz

= −100
2× 103 = −0.05 δy2

δz
= 100

2× 103 = 0.05

Hence,

Sy,w = −20× 103+ 53320× 0.05+ 53320× 0.05= −14668N
The shear flowdistribution in theweb follows fromeitherEq. (20.6) orEq. (20.7) and is (see Fig. 20.2(b))

q12 = 14668

22.5× 106

⎛
⎝ s∫
0

2(150− s)ds+ 400× 150
⎞
⎠
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Fig. 20.3

Shear flow (N/mm) distribution at Section AA in Example 20.1.

that is,

q12 = 6.52× 10−4(−s2+ 300s+ 60000) (ii)

The maximum value of q12 occurs when s=150mm and q12 (max)=53.8N/mm. The values of shear
flow at points 1 (s=0) and 2 (s=300mm) are q1=39.1 N/mm and q2=39.1 N/mm; the complete
distribution is shown in Fig. 20.3.

20.2 OPEN AND CLOSED SECTION BEAMS
We shall now consider the more general case of a beam tapered in two directions along its length and
comprising an arrangement of booms and skin. Practical examples of such a beam are complete wings
and fuselages. The beam may be of open or closed section; the effects of taper are determined in an
identical manner in either case.
Figure 20.4(a) shows a short length δz of a beam carrying shear loads Sx and Sy at the section z;

Sx and Sy are positive when acting in the directions shown. Note that if the beam were of open cross
section, the shear loads would be applied through its shear center so that no twisting of the beam
occurred. In addition to shear loads, the beam is subjected to bending moments Mx and My, which
produce direct stresses σz in the booms and skin. Suppose that in the rth boom the direct stress in a
direction parallel to the z axis is σz,r , which may be found using either Eq. (15.18) or Eq. (15.19).
The component Pz,r of the axial load Pr in the rth boom is then given by

Pz,r = σz,rBr (20.8)

where Br is the cross-sectional area of the rth boom.
From Fig. 20.4(b),

Py,r = Pz,r δyr
δz

(20.9)
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Fig. 20.4

Effect of taper on the analysis of open and closed section beams.

Further, from Fig. 20.4(c),

Px,r = Py,r δxr
δyr

or, substituting for Py,r from Eq. (20.9),

Px,r = Pz,r δxr
δz

(20.10)
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The axial load Pr is then given by

Pr = (P2x,r +P2y,r +P2z,r)1/2 (20.11)

or

Pr = Pz,r (δx
2
r + δy2r + δz2)1/2

δz
(20.12)

The applied shear loads Sx and Sy are reacted by the resultants of the shear flows in the skin panels and
webs, together with the components Px,r and Py,r of the axial loads in the booms. Therefore, if Sx,w and
Sy,w are the resultants of the skin and web shear flows and there is a total of m booms in the section,

Sx = Sx,w+
m∑
r=1
Px,r Sy = Sy,w+

m∑
r=1
Py,r (20.13)

Substituting in Eq. (20.13) for Px,r and Py,r from Eqs. (20.10) and (20.9), we have

Sx = Sx,w+
m∑
r=1
Pz,r

δxr
δz

Sy = Sy,w+
m∑
r=1
Pz,r

δyr
δz

(20.14)

Hence,

Sx,w = Sx −
m∑
r=1
Pz,r

δxr
δz

Sy,w = Sy−
m∑
r=1
Pz,r

δyr
δz

(20.15)

The shear flow distribution in an open section beam is now obtained using Eq. (19.6) in which Sx is
replaced by Sx,w and Sy by Sy,w from Eq. (20.15). Similarly for a closed section beam, Sx and Sy in
Eq. (19.11) are replaced by Sx,w and Sy,w. In the latter case, the moment equation (Eq. (16.17)) requires
modification due to the presence of the boom load components Px,r and Py,r . Thus, from Fig. 20.5, we

Fig. 20.5

Modification of moment equation in shear of closed section beams due to boom load.
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see that Eq. (16.17) becomes

Sxη0− Syξ0 =
∮
qbpds+ 2Aqs,0−

m∑
r=1
Px,rηr +

m∑
r=1
Py,rξr (20.16)

Equation (20.16) is directly applicable to a tapered beam subjected to forces positioned in relation to
the moment center as shown. Care must be taken in a particular problem to ensure that the moments of
the forces are given the correct sign.

Example 20.2
The cantilever beam shown in Fig. 20.6 is uniformly tapered along its length in both x and y directions
and carries a load of 100kN at its free end. Calculate the forces in the booms and the shear flow
distribution in the walls at a section 2m from the built-in end if the booms resist all the direct stresses
while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900mm2,
while both central booms have cross-sectional areas of 1200mm2.

The internal force system at a section 2m from the built-in end of the beam is

Sy = 100kN Sx = 0 Mx = −100× 2= −200kNm My = 0

The beam has a doubly symmetrical cross section so that Ixy=0 and Eq. (15.18) reduces to

σz = Mxy

Ixx
(i)

Fig. 20.6

(a) Beam of Example 20.2; (b) section 2 m from built-in end.
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in which, for the beam section shown in Fig. 20.6(b),

Ixx = 4× 900× 3002+ 2× 1200× 3002 = 5.4× 108mm4
Then,

σz,r = −200× 106
5.4× 108 yr

or

σz,r = −0.37yr (ii)

Hence,

Pz,r = −0.37yrBr (iii)

The value of Pz,r is calculated from Eq. (iii) in column ② in Table 20.1; Px,r and Py,r follow from
Eqs. (20.10) and (20.9), respectively, in columns ⑤ and ⑥. The axial load Pr , column ⑦, is given by
[②2+⑤2+⑥2]1/2 and has the same sign as Pz,r (see Eq. (20.12)). The moments of Px,r and Py,r are
calculated for a moment center at the center of symmetry with anticlockwise moments taken as positive.
Note that in Table 20.1, Px,r and Py,r are positive when they act in the positive directions of the section x
and y axes, respectively; the distances ηr and ξr of the lines of action of Px,r and Py,r from the moment
center are not given signs, since it is simpler to determine the sign of each moment, Px,rηr and Py,rξr ,
by referring to the directions of Px,r and Py,r individually.

From column ⑥

6∑
r=1
Py,r = 33.4kN

From column ⑩

6∑
r=1
Px,rηr = 0

From column
6∑
r=1
Py,rξr = 0

From Eq. (20.15),

Sx,w = 0 Sy,w = 100− 33.4= 66.6kN

Table 20.1

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Pz,r δxr/δz δyr/δz Px,r Py,r Pr ξr ηr Px,rηr Py,rξr
Boom (kN) (kN) (kN) (kN) (m) (m) (kN m) (kN m)

1 −100 0.1 −0.05 −10 5 −101.3 0.6 0.3 3 −3
2 −133 0 −0.05 0 6.7 −177.3 0 0.3 0 0
3 −100 −0.1 −0.05 10 5 −101.3 0.6 0.3 −3 3
4 100 −0.1 0.05 −10 5 101.3 0.6 0.3 −3 3
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0
6 100 0.1 0.05 10 5 101.3 0.6 0.3 3 −3
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The shear flow distribution in the walls of the beam is now found using the method described in
Section 19.3. Since, for this beam, Ixy=0 and Sx=Sx,w=0, Eq. (19.11) reduces to

qs = −Sy,w
Ixx

n∑
r=1
Bryr + qs,0 (iv)

We now “cut” one of the walls, say 16. The resulting “open section” shear flow is given by

qb = −66.6× 103
5.4× 108

n∑
r=1
Bryr

or

qb = −1.23× 10−4
n∑
r=1
Bryr (v)

Thus,

qb,16 = 0
qb,12 = 0− 1.23× 10−4× 900× 300= −33.2N/mm

qb,23 = −33.2− 1.23× 10−4× 1200× 300= −77.5N/mm

qb,34 = −77.5− 1.23× 10−4× 900× 300= −110.7N/mm

qb,45 = −77.5N/mm (from symmetry)

qb,56 = −33.2N/mm (from symmetry)

giving the distribution shown in Fig. 20.7. Taking moments about the center of symmetry, we have,
from Eq. (20.16),

−100× 103× 600= 2× 33.2× 600× 300+ 2× 77.5× 600× 300
+ 110.7× 600× 600+ 2× 1200× 600qs,0

fromwhich qs,0=−97.0N/mm(i.e., clockwise). The complete shear flowdistribution is found by adding
the value of qs,0 to the qb shear flow distribution of Fig. 20.7 and is shown in Fig. 20.8.

Fig. 20.7

“Open section” shear flow (N/mm) distribution in beam section of Example 20.2.
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Fig. 20.8

Shear flow (N/mm) distribution in beam section of Example 20.2.

20.3 BEAMS HAVING VARIABLE STRINGER AREAS
In many aircraft, structural beams, such as wings, have stringers whose cross-sectional areas vary in the
spanwise direction. The effects of this variation on the determination of shear flow distribution cannot
therefore be found by the methods described in Section 19.3 which assume constant boom areas. In
fact, as we noted in Section 19.3, if the stringer stress is made constant by varying the area of cross
section, there is no change in shear flow as the stringer/boom is crossed.
The calculation of shear flow distributions in beams having variable stringer areas is based on the

alternativemethod for the calculation of shear flow distributions described in Section 19.3 and illustrated
in the alternative solution of Example 19.3. The stringer loads Pz,1 andPz,2 are calculated at two sections
z1 and z2 of the beam a convenient distance apart. We assume that the stringer load varies linearly along
its length so that the change in stringer load per unit length of beam is given by

�P = Pz,1−Pz,2
z1− z2

The shear flow distribution follows as previously described.

Example 20.3
Solve Example 20.2 by considering the differences in boom load at sections of the beam either side of
the specified section.

In this example, the stringer areas do not vary along the length of the beam, but themethod of solution
is identical.
We are required to find the shear flow distribution at a section 2m from the built-in end of the

beam. We therefore calculate the boom loads at sections, say 0.1m either side of this section. Thus, at
a distance 2.1m from the built-in end,

Mx = −100× 1.9= −190kNm
The dimensions of this section are easily found by proportion and are of width=1.18m and
depth=0.59m. Thus, the second moment of area is

Ixx = 4× 900× 2952+ 2× 1200× 2952 = 5.22× 108mm4
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and

σz,r = −190× 106
5.22× 108 yr = −0.364yr

Hence,

P1 = P3 = −P4 = −P6 = −0.364× 295× 900= −96642N
and

P2 = −P5 = −0.364× 295× 1200= −128856N
At a section 1.9m from the built-in end,

Mx = −100× 2.1= −210kNm
and the section dimensions are of width = 1.22 m and depth = 0.61m, so

Ixx = 4× 900× 3052+ 2× 1200× 3052 = 5.58× 108mm4
and

σz,r = −210× 106
5.58× 108 yr = −0.376yr

Hence,

P1 = P3 = −P4 = −P6 = −0.376× 305× 900= −103212N
and

P2 = −P5 = −0.376× 305× 1200= −137616N
Thus, there is an increase in compressive load of 103212−96 642=6570N in booms 1 and 3 and an
increase in tensile load of 6570N in booms 4 and 6 between the two sections. Also, the compressive
load in boom 2 increases by 137616−128 856=8760N, while the tensile load in boom 5 increases by
8760N. Therefore, the change in boom load per unit length is given by

�P1 = �P3 = −�P4 = −�P6 = 6570

200
= 32.85N

and

�P2 = −�P5 = 8760

200
= 43.8N

The situation is illustrated in Fig. 20.9. Suppose now that the shear flows in the panels 12, 23, 34, and
so on are q12, q23, q34, and so on, and consider the equilibrium of boom 2, as shown in Fig. 20.10, with
adjacent portions of the panels 12 and 23. Thus,

q23+ 43.8− q12 = 0
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Fig. 20.9

Change in boom loads/unit length of beam.

Fig. 20.10

Equilibrium of boom.

or

q23 = q12− 43.8
Similarly,

q34 = q23− 32.85= q12− 76.65
q45 = q34+ 32.85= q12− 43.8
q56 = q45+ 43.8= q12
q61 = q45+ 32.85= q12+ 32.85
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The moment resultant of the internal shear flows, together with the moments of the components Py,r
of the boom loads about any point in the cross section, is equivalent to the moment of the externally
applied load about the same point. We note from Example 20.2 that for moments about the center of
symmetry,

6∑
r=1
Px,rηr = 0

6∑
r=1
Py,rξr = 0

Therefore, taking moments about the center of symmetry

100× 103× 600= 2q12× 600× 300+ 2(q12− 43.8)600× 300
+ (q12− 76.65)600× 600+ (q12+ 32.85)600× 600

from which

q12 = 62.5N/mm

from which

q23 = 19.7N/mm q34 = −13.2N/mm q45 = 19.7N/mm,

q56 = 63.5N/mm q61 = 96.4N/mm

so that the solution is almost identical to the longer exact solution of Example 20.2.
The shear flows q12, q23, and so on induce complementary shear flows q12, q23, and so on in the

panels in the longitudinal direction of the beam; these are, in fact, the average shear flows between the
two sections considered. For a complete beam analysis, the above procedure is applied to a series of
sections along the span. The distance between adjacent sections may be taken to be any convenient
value; for actual wings, distances of the order of 350 to 700mm are usually chosen. However, for very
small values, small percentage errors in Pz,1 and Pz,2 result in large percentage errors in �P. On the
other hand, if the distance is too large, the average shear flow between two adjacent sections may not
be quite equal to the shear flow midway between the sections.

Problems
P.20.1 A wing spar has the dimensions shown in Fig. P.20.1 and carries a uniformly distributed load of 15kN/m
along its complete length. Each flange has a cross-sectional area of 500mm2 with the top flange being horizontal.
If the flanges are assumed to resist all direct loads while the spar web is effective only in shear, determine the flange
loads and the shear flows in the web at sections 1 and 2m from the free end.

Ans. 1m from free end: PU=25kN (tension), PL=25.1kN (compression), q=41.7N/mm.
2m from free end: PU=75kN (tension), PL=75.4kN (compression), q=56.3N/mm.
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Fig. P.20.1

P.20.2 If the web in the wing spar of P.20.1 has a thickness of 2mm and is fully effective in resisting direct stresses,
calculate the maximum value of shear flow in the web at a section 1m from the free end of the beam.

Ans. 46.8 N/mm.

P.20.3 Calculate the shear flow distribution and the stringer and flange loads in the beam shown in Fig. P.20.3 at
a section 1.5m from the built-in end. Assume that the skin and web panels are effective in resisting shear stress
only; the beam tapers symmetrically in a vertical direction about its longitudinal axis.

Ans. q13=q42=36.9N/mm, q35=q64=7.3N/mm, q21=96.2N/mm,
q65=22.3N/mm.

P2 = −P1 = 133.3kN, P4 = P6 = −P3 = −P5 = 66.7kN.

Fig. P.20.3
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CHAPTER

21Fuselages

Aircraft fuselages consist, as we saw in Chapter 11, of thin sheets of material stiffened by large numbers
of longitudinal stringers together with transverse frames. Generally, they carry bending moments, shear
forces, and torsional loads, which induce axial stresses in the stringers and skin together with shear
stresses in the skin; the resistance of the stringers to shear forces is generally ignored. Also, the distance
between adjacent stringers is usually small so that the variation in shear flow in the connecting panel will
be small. It is therefore reasonable to assume that the shear flow is constant between adjacent stringers
so that the analysis simplifies to the analysis of an idealized section in which the stringers/booms carry
all the direct stresses, while the skin is effective only in shear. The direct stress-carrying capacity of
the skin may be allowed for by increasing the stringer/boom areas as described in Section 19.3. The
analysis of fuselages therefore involves the calculation of direct stresses in the stringers and the shear
stress distributions in the skin; the latter are also required in the analysis of transverse frames, as we
shall see in Chapter 23.

21.1 BENDING
The skin/stringer arrangement is idealized into one comprising booms and skin as described in
Section 19.3. The direct stress in each boom is then calculated using either Eq. (15.18) or Eq. (15.19), in
which the reference axes and the section properties refer to the direct stress-carrying areas of the cross
section.

Example 21.1
The fuselage of a light passenger-carrying aircraft has the circular cross section shown in Fig. 21.1(a).
The cross-sectional area of each stringer is 100mm2, and the vertical distances given in Fig. 21.1(a) are
to the midline of the section wall at the corresponding stringer position. If the fuselage is subjected to
a bending moment of 200kNm applied in the vertical plane of symmetry, at this section, calculate the
direct stress distribution.

The section is first idealized using the method described in Section 19.3. As an approximation, we
shall assume that the skin between adjacent stringers is flat so that we may use either Eq. (19.1) or
Eq. (19.2) to determine the boom areas. From symmetry, B1 = B9, B2 = B8 = B10 = B16, B3 = B7 =

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00021-X 577
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Fig. 21.1

(a) Actual fuselage section; (b) idealized fuselage section.

B11 = B15, B4 = B6 = B12 = B14, and B5 = B13. From Eq. (19.1),

B1 = 100+ 0.8× 149.6
6

(
2+ σ2

σ1

)
+ 0.8× 149.6

6

(
2+ σ16

σ1

)
that is,

B1 = 100+ 0.8× 149.6
6

(
2+ 352.0

381.0

)
× 2= 216.6mm2

Similarly, B2 = 216.6mm2, B3 = 216.6mm2, B4 = 216.7mm2. We note that stringers 5 and 13 lie on
the neutral axis of the section and are therefore unstressed; the calculation of boom areas B5 and B13
does not then arise. For this particular section, Ixy = 0, since Cx (and Cy) is an axis of symmetry. Further,
My = 0 so that Eq. (15.18) reduces to

σz = Mxy

Ixx

in which

Ixx = 2× 216.6× 381.02+ 4× 216.6× 352.02+ 4× 216.6× 26952
+ 4× 216.7× 145.82 = 2.52× 108mm4

The solution is completed in Table 21.1.

21.2 SHEAR
For a fuselage having a cross section of the type shown in Fig. 21.1(a), the determination of the shear
flow distribution in the skin produced by shear is basically the analysis of an idealized single cell
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Table 21.1

Stringer/boom y(mm) σz(N/mm2)

1 381.0 302.4
2, 16 352.0 279.4
3, 15 269.5 213.9
4, 14 145.8 115.7
5, 13 0 0
6, 12 −145.8 −115.7
7, 11 −269.5 −213.9
8, 10 −352.0 −279.4
9 −381.0 −302.4

closed section beam. The shear flow distribution is therefore given by Eq. (19.11), in which the direct
stress-carrying capacity of the skin is assumed to be zero, that is, tD = 0, thus,

qs = −
(
SxIxx − SyIxy
IxxIyy− I2xy

)
n∑
r=1
Bryr −

(
SyIyy− SxIxy
IxxIyy− I2xy

)
n∑
r=1
Brxr + qs,0 (21.1)

Equation (21.1) is applicable to loading cases in which the shear loads are not applied through the
section shear center so that the effects of shear and torsion are included simultaneously. Alternatively,
if the position of the shear center is known, the loading system may be replaced by shear loads acting
through the shear center together with a pure torque, and the corresponding shear flow distributions
may be calculated separately and then superimposed to obtain the final distribution.

Example 21.2
The fuselage of Example 21.1 is subjected to a vertical shear load of 100kN applied at a distance of
150mm from the vertical axis of symmetry as shown, for the idealized section, in Fig. 21.2. Calculate
the distribution of shear flow in the section.

As in Example 21.1, Ixy = 0, and, since Sx = 0, Eq. (21.1) reduces to

qs = − Sy
Ixx

n∑
r=1
Bryr + qs,0 (i)

in which Ixx = 2.52×108mm4 as before. Then,

qs = −100× 103
2.52× 108

n∑
r=1
Bryr + qs,0

or

qs = −3.97× 10−4
n∑
r=1
Bryr + qs,0 (ii)
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Fig. 21.2

Idealized fuselage section of Example 21.2.

The first term on the right-hand side of Eq. (ii) is the “open section” shear flow qb. We therefore “cut”
one of the skin panels, say 12, and calculate qb. The results are presented in Table 21.2.
Note that in Table 21.2, the column headed Boom indicates the boom that is crossed when the

analysis moves from one panel to the next. Note also that, as would be expected, the qb shear flow
distribution is symmetrical about the Cx axis. The shear flow qs,0 in the panel 12 is now found by taking
moments about a convenient moment center, say C. Therefore, from Eq. (16.17),

100× 103× 150=
∮
qb pds+ 2Aqs,0 (iii)

in which A= π×381.02 = 4.56×105mm2. Since the qb shear flows are constant between the booms,
Eq. (iii) may be rewritten in the form (see Eq. (19.10))

100× 103× 150= −2A12qb,12− 2A23qb,23− ·· ·− 2A161qb,16l+ 2Aqs,0 (iv)

in which A12, A23, . . . , A161 are the areas subtended by the skin panels 12, 23, …, 16 l at the center C
of the circular cross section and counterclockwise moments are taken as positive. Clearly A12 = A23 =
·· · = A161 = 4.56×105/16= 28500mm2. Equation (iv) then becomes

100× 103× 150= 2× 28500(−qb12 − qb23 − ·· ·− qb16l) + 2× 4.56× 105qs,0 (v)

Substituting the values of qb from Table 21.2 in Eq. (v), we obtain

100× 103× 150= 2× 28500(−262.4) + 2× 4.56× 105qs,0
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Table 21.2

Skin panel Boom Br(mm2) yr(mm) qb(N/mm)

1 2 − − − 0
2 3 2 216.6 352.0 −30.3
3 4 3 216.6 269.5 −53.5
4 5 4 216.7 145.8 −66.0
5 6 5 − 0 −66.0
6 7 6 216.7 −145.8 −53.5
7 8 7 216.6 −269.5 −30.3
8 9 8 216.6 −352.0 0
1 16 1 216.6 381.0 −32.8

16 15 16 216.6 352.0 −63.1
15 14 15 216.6 269.5 −86.3
14 13 14 216.6 145.8 −98.8
13 12 13 − 0 −98.8
12 11 12 216.7 −145.8 −86.3
11 10 11 216.6 −269.5 −63.1
10 9 10 216.6 −352.0 −32.8

from which

qs,0 = 32.8N/mm (acting in an counterclockwise sense)
The complete shear flow distribution follows by adding the value of qs,0 to the qb shear flow distribution,
giving the final distribution shown in Fig. 21.3. The solutionmay be checked by calculating the resultant
of the shear flow distribution parallel to the Cy axis. Thus,

2[(98.8+ 66.0)145.8+ (86.3+ 53.5)123.7+ (63.1+ 30.3)82.5
+ (32.8− 0)29.0]× 10−3 = 99.96kN

which agrees with the applied shear load of 100kN. The analysis of a fuselage which is tapered along
its length is carried out using the method described in Section 20.2 and illustrated in Example 20.2.

21.3 TORSION
A fuselage section is basically a single cell closed section beam. The shear flow distribution produced
by a pure torque is therefore given by Eq. (17.1) and is

q = T

2A
(21.2)
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Fig. 21.3

Shear flow (N/mm) distribution in fuselage section of Example 21.2.

It is immaterial whether or not the section has been idealized, since, in both cases, the booms are assumed
not to carry shear stresses.
Equation (21.2) provides an alternative approach to that illustrated in Example 21.2 for the solution

of shear loaded sections in which the position of the shear center is known. In Fig. 21.1, the shear
center coincides with the center of symmetry so that the loading system may be replaced by the shear
load of 100kN acting through the shear center together with a pure torque equal to 100×103×150=
15×106 Nmm as shown in Fig. 21.4. The shear flow distribution due to the shear load may be found
using the method of Example 21.2 but with the left-hand side of the moment equation (iii) equal to
zero for moments about the center of symmetry. Alternatively, use may be made of the symmetry of
the section and the fact that the shear flow is constant between adjacent booms. Suppose that the shear
flow in the panel 21 is q21. Then, from symmetry and using the results of Table 21.2,

q98 = q910 = q161 = q21
q32 = q87 = q1011 = q1516 = 30.3+ q21
q43 = q76 = q1112 = q1415 = 53.5+ q21
q54 = q65 = q1213 = q1314 = 66.0+ q21

The resultant of these shear flows is statically equivalent to the applied shear load so that

4(29.0q21+ 82.5q32+ 123.7q43+ 145.8q54) = 100× 103
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Fig. 21.4

Alternative solution of Example 21.2.

Substituting for q32, q43, and q54 from the preceding, we obtain

4(381q21+ 18740.5) = 100× 103

from which

q21 = 16.4N/mm

and

q32 = 46.7N/mm, q43 = 69.9N/mm, q54 = 83.4N/mm, and so on
The shear flow distribution due to the applied torque is, from Eq. (21.2)

q = 15× 106
2× 4.56× 105 = 16.4N/mm

acting in an counterclockwise sense completely around the section. This value of shear flow is now
superimposed on the shear flows produced by the shear load; this gives the solution shown in Fig. 21.3;
that is,

q21 = 16.4+ 16.4= 32.8N/mm

q161 = 16.4− 16.4= 0, and so on
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21.4 CUTOUTS IN FUSELAGES
So far we have considered fuselages to be closed sections stiffened by transverse frames and longitudinal
stringers. In practice, it is necessary to provide openings in these closed stiffened shells for, for example,
doors, cockpits, bomb bays, windows in passenger cabins, and so forth. These openings or “cutouts”
produce discontinuities in the otherwise continuous shell structure so that loads are redistributed in the
vicinity of the cutout, thereby affecting loads in the skin, stringers, and frames. Frequently, these regions
must be heavily reinforced, resulting in unavoidableweight increases. In some cases—for example, door
openings in passenger aircraft—it is not possible to provide rigid fuselage frames on each side of the
opening because the cabin space must not be restricted. In such situations, a rigid frame is placed
around the opening to resist shear loads and to transmit loads from one side of the opening to the
other.
The effects of smaller cutouts, such as those required for rows of windows in passenger aircraft,

may be found approximately as follows. Figure 21.5 shows a fuselage panel provided with cutouts for
windows which are spaced a distance l apart. The panel is subjected to an average shear flow qav, which

Fig. 21.5

Fuselage panel with windows.
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would be the value of the shear flow in the panel without cutouts. Considering a horizontal length of
the panel through the cutouts, we see that

q1l1 = qavl
or

q1 = l

l1
qav (21.3)

Now considering a vertical length of the panel through the cutouts,

q2d1 = qavd
or

q2 = d

d1
qav (21.4)

The shear flows q3 may be obtained by considering either vertical or horizontal sections not containing
the cutout. Thus,

q3ll+ q2lw = qavl
Substituting for q2 from Eq. (21.3) and noting that l = l1+ lw and d = d1+ dw, we obtain

q3 =
(
1− dw

dl

lw
ll

)
qav (21.5)

Problems
P.21.1 The doubly symmetrical fuselage section shown in Fig. P.21.1 has been idealized into an arrangement of
direct stress-carrying booms and shear stress-carrying skin panels; the boom areas are all 150mm2. Calculate the

Fig. P.21.1
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direct stresses in the booms and the shear flows in the panels when the section is subjected to a shear load of 50kN
and a bending moment of 100kNm.

Ans. σz,1 = −σz,6 =180N/mm2, σz,2 = σz,10 = −σz,5 = −σz,7 =144.9N/mm2,
σz,3 = σz,9 = −σz,4 = −σz,8 = 60N/mm2.

q21 = q65 = 1.9N/mm, q32 = q54 = 12.8 N/mm, q43 = 17.3 N/mm,

q67 = q101 = 11.6 N/mm, q78 = q910 = 22.5 N/mm, q89 = 27.0 N/mm.

P.21.2 Determine the shear flow distribution in the fuselage section of P.21.1 by replacing the applied load by a
shear load through the shear center together with a pure torque.



CHAPTER

22Wings

We have seen in Chapters 11 and 19 that wing sections consist of thin skins stiffened by combinations of
stringers, spar webs, and caps and ribs. The resulting structure frequently comprises one, two, or more
cells and is highly redundant. However, as in the case of fuselage sections, the large number of closely
spaced stringers allows the assumption of a constant shear flow in the skin between adjacent stringers
so that a wing section may be analyzed as though it were completely idealized as long as the direct
stress-carrying capacity of the skin is allowed for by additions to the existing stringer/boom areas. We
shall investigate the analysis of multicellular wing sections subjected to bending, torsional, and shear
loads, although, initially, it will be instructive to examine the special case of an idealized three-boom
shell.

22.1 THREE-BOOM SHELL
The wing section shown in Fig. 22.1 has been idealized into an arrangement of direct stress-carrying
booms and shear-stress-only carrying skin panels. The part of the wing section aft of the vertical spar 31
performs an aerodynamic role only and is therefore unstressed. Lift and drag loads, Sy and Sx , induce
shear flows in the skin panels, which are constant between adjacent booms, since the section has been
completely idealized. Therefore, resolving horizontally and noting that the resultant of the internal shear
flows is equivalent to the applied load, we have

Sx = −q12l12+ q23l23 (22.1)

Now resolving vertically,

Sy = q31(h12+ h23) − q12h12− q23h23 (22.2)

Finally, taking moments about, say, boom 3,

Sxη0+ Syξ0 = −2A12q12− 2A23q23 (22.3)

(see Eqs. (19.9) and (19.10)). In the above, there are three unknown values of shear flow, q12,q23,q31,
and three equations of statical equilibrium. We conclude therefore that a three-boom idealized shell is
statically determinate.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00022-1 587
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Fig. 22.1

Three-boom wing section.

We shall return to the simple case of a three-boom wing section when we examine the distributions
of direct load and shear flows in wing ribs. Meanwhile, we shall consider the bending, torsion, and shear
of multicellular wing sections.

22.2 BENDING
Bending moments at any section of a wing are usually produced by shear loads at other sections of
the wing. The direct stress system for such a wing section (Fig. 22.2) is given by either Eq. (15.18) or
Eq. (15.19), in which the coordinates (x,y) of any point in the cross section and the sectional properties
are referred to axes Cxy in which the origin C coincides with the centroid of the direct stress-carrying
area.

Example 22.1
The wing section shown in Fig. 22.3 has been idealized such that the booms carry all the direct stresses.
If the wing section is subjected to a bending moment of 300kNm applied in a vertical plane, calculate
the direct stresses in the booms.

Boom areas: B1 = B6 = 2580mm2 B2 = B5 = 3880mm2 B3 = B4 = 3230mm2

We note that the distribution of the boom areas is symmetrical about the horizontal x axis. Hence,
in Eq. (15.18), Ixy=0. Further, Mx=300kNm and My=0 so that Eq. (15.18) reduces to

σz = Mxy

Ixx
(i)



22.2 Bending 589

Fig. 22.2

Idealized section of a multicell wing.

Fig. 22.3

Wing section of Example 22.1.

Table 22.1

Boom y(mm) σz(N/mm2)

1 165 61.2
2 230 85.3
3 200 74.2
4 −200 −74.2
5 −230 −85.3
6 −165 −61.2

in which

Ixy = 2(2580× 1652+ 3880× 2302+ 3230× 2002) = 809× 106mm4

Hence,

σz = 300× 106
809× 106 y= 0.371y (ii)

The solution is now completed in Table 22.1 in which positive direct stresses are tensile and negative
direct stresses compressive.
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22.3 TORSION
The chordwise pressure distribution on an aerodynamic surface may be represented by shear loads
(lift and drag loads) acting through the aerodynamic center together with a pitching moment M0 (see
Section 11.1). This system of shear loads may be transferred to the shear center of the section in the
form of shear loads Sx and Sy together with a torque T . It is the pure torsion case that is considered
here. In the analysis, we assume that no axial constraint effects are present and that the shape of the
wing section remains unchanged by the load application. In the absence of axial constraint, there is no
development of direct stress in the wing section so that only shear stresses are present. It follows that
the presence of booms does not affect the analysis in the pure torsion case.
The wing section shown in Fig. 22.4 comprises N cells and carries a torque T which generates

individual but unknown torques in each of the N cells. Each cell therefore develops a constant shear
flow qI,qII, . . . ,qR, . . . ,qN given by Eq. (17.1).
The total is therefore

T =
N∑
R=1
2ARqR (22.4)

Although Eq. (22.4) is sufficient for the solution of the special case of a single-cell section, which
is therefore statically determinate, additional equations are required for an N-cell section. These are
obtained by considering the rate of twist in each cell and the compatibility of displacement condition
that all N cells possess the same rate of twist dθ /dz; this arises directly from the assumption of an
undistorted cross section.
Consider the Rth cell of the wing section shown in Fig. 22.5. The rate of twist in the cell is, from

Eq. (16.22),

dθ

dz
= 1

2ARG

∮
R

q
ds

t
(22.5)

Fig. 22.4

Multicell wing section subjected to torsion.
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Fig. 22.5

Shear flow distribution in the Rth cell of an N-cell wing section.

The shear flow in Eq. (22.5) is constant along each wall of the cell and has the values shown in Fig. 22.5.
Writing

∫
ds/t for each wall as δ, Eq. (22.5) becomes

dθ

dz
= 1

2ARG
[qRδ12+ (qR− qR−1)δ23+ qRδ34+ (qR− qR+1)δ41]

or, rearranging the terms in square brackets,

dθ

dz
= 1

2ARG
[−qR−1δ23+ qR(δ12+ δ23+ δ34+ δ41) − qR+1δ41]

In general terms, this equation may be rewritten in the form

dθ

dz
= 1

2ARG
(−qR−1δR−1,R+ qRδR− qR+1δR+1,R) (22.6)

in which δR−1,R is
∫
ds/t for the wall common to the Rth and (R−1)th cells, δR is

∫
ds/t for all the walls

enclosing the Rth cell, and δR+1,R is
∫
ds/t for the wall common to the Rth and (R+1)th cells.

The general form of Eq. (22.6) is applicable to multicell sections in which the cells are connected
consecutively—that is, cell I is connected to cell II, cell II to cells I and III, and so on. In some cases,
cell I may be connected to cells II and III, and so on (see problem P.22.4) so that Eq. (22.6) cannot be
used in its general form. For this type of section, the term

∮
q(ds/t) should be computed by considering∫

q(ds/t) for each wall of a particular cell in turn.
There are N equations of the type (22.6) which, with Eq. (22.4), comprise the N+1 equations

required to solve for the N unknown values of shear flow and the one unknown value of dθ /dz.
Frequently, in practice, the skin panels and spar webs are fabricated from materials possessing

different properties such that the shear modulus G is not constant. The analysis of such sections is
simplified if the actual thickness t of a wall is converted to a modulus-weighted thickness t∗ as follows.
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For the Rth cell of an N-cell wing section in which G varies from wall to wall, Eq. (22.5) takes the form

dθ

dz
= 1

2AR

∮
R

q
ds

Gt

This equation may be rewritten as

dθ

dz
= 1

2ARGREF

∮
R

q
ds

(G/GREF)t
(22.7)

in whichGREF is a convenient reference value of the shear modulus. Equation (22.7) is now rewritten as

dθ

dz
= 1

2ARGREF

∮
R

q
ds

t∗
(22.8)

in which the modulus-weighted thickness t∗ is given by

t∗ = G

GREF
t (22.9)

Then, in Eq. (22.6), δ becomes
∫
ds/t∗.

Example 22.2
Calculate the shear stress distribution in the walls of the three-cell wing section shown in Fig. 22.6,
when it is subjected to an counterclockwise torque of 11.3kNm.

Wall Length (mm) Thickness (mm) G(N/mm2) Cell area (mm2)

12o 1650 1.22 24 200 AI=258 000
12i 508 2.03 27 600 AII=355 000
13, 24 775 1.22 24 200 AIII=161 000
34 380 1.63 27 600
35, 46 508 0.92 20 700
56 254 0.92 20 700

Note: The superscript symbols o and i are used to distinguish between outer and inner walls
connecting the same two booms.

Since the wing section is loaded by a pure torque, the presence of the booms has no effect on the
analysis.

Choosing GREF=27600N/mm2 then, from Eq. (22.9),

t∗12◦ = 24200

27600
× 1.22= 1.07mm

Similarly,

t∗13 = t∗24 = 1.07mm t∗35 = t∗46 = t∗56 = 0.69mm
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Fig. 22.6

Wing section of Example 22.2.

Hence,

δ12◦ =
∫
12◦

ds

t∗
= 1650

1.07
= 1542

Similarly,

δ12i =250 δ13=δ24=725 δ34 = 233 δ35=δ46=736 δ56=368
Substituting the appropriate values of δ in Eq. (22.6) for each cell in turn gives the following:

• For cell I,

dθ

dz
= 1

2× 258000GREF [qI(1542+ 250) − 250qII] (i)

• For cell II,

dθ

dz
= 1

2× 355000GREF [−250qI+ qII(250+ 725+ 233+ 725) − 233qIII] (ii)

• For cell III,

dθ

dz
= 1

2× 161000GREF [−233qII+ qIII(736+ 233+ 736+ 368)] (iii)

In addition, from Eq. (22.4),

11.3× 106 = 2(258000qI+ 355000qII+ 161000qIII) (iv)

Solving Eqs. (i) through (iv) simultaneously gives

qI = 7.1N/mm qII = 8.9N/mm qIII = 4.2N/mm

The shear stress in any wall is obtained by dividing the shear flow by the actual wall thickness. Hence,
the shear stress distribution is as shown in Fig. 22.7.
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Fig. 22.7

Shear stress (N/mm2) distribution in wing section of Example 22.2.

Fig. 22.8

N-cell wing section subjected to shear loads.

22.4 SHEAR
Initially, we shall consider the general case of an N-cell wing section comprising booms and skin panels,
the latter being capable of resisting both direct and shear stresses. The wing section is subjected to shear
loads Sx and Sy, whose lines of action do not necessarily pass through the shear center S (see Fig. 22.8);
the resulting shear flow distribution is therefore due to the combined effects of shear and torsion.
The method for determining the shear flow distribution and the rate of twist is based on a simple

extension of the analysis of a single-cell beam subjected to shear loads (Sections 16.3 and 19.3). Such
a beam is statically indeterminate, the single redundancy being selected as the value of shear flow
at an arbitrarily positioned “cut.” Thus, the N-cell wing section of Fig. 22.8 may be made statically
determinate by “cutting” a skin panel in each cell as shown. While the actual position of these “cuts” is
theoretically immaterial, there are advantages to be gained from a numerical point of view if the “cuts”
are made near the center of the top or bottom skin panel in each cell. Generally, at these points, the
redundant shear flows (qs,0) are small so that the final shear flows differ only slightly from those of the
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determinate structure. The system of simultaneous equations from which the final shear flows are found
will then be “well conditioned” and will produce reliable results. The solution of an “ill-conditioned”
system of equations would probably involve the subtraction of large numbers of a similar size which
would therefore need to be expressed to a large number of significant figures for reasonable accuracy.
Although this reasoning does not apply to a completely idealized wing section, since the calculated
values of shear flow are constant between the booms, it is again advantageous to “cut” either top or
bottom skin panels for, in the special case of a wing section having a horizontal axis of symmetry, a
“cut” in, say, the top skin panels will result in the “open section” shear flows (qb) being zero in the
bottom skin panels. This decreases the arithmetical labor and simplifies the derivation of the moment
equation, as will become obvious in Example 22.4.
The “open section” shear flow qb in the wing section of Fig. 22.8 is given by Eq. (19.6), that is,

qb = −
(
SxIxx − SyIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDxds+
n∑
r=1
Brxr

⎞
⎠

−
(
SyIyy− SxIxy
IxxIyy− I2xy

)⎛⎝ s∫
0

tDyds+
n∑
r=1
Bryr

⎞
⎠

We are left with an unknown value of shear flow at each of the “cuts,” that is, qs,0,I, qs,0,II, . . . ,qs,0,N ,
plus the unknown rate of twist dθ /dz, which, from the assumption of an undistorted cross section, is the
same for each cell. Therefore, as in the torsion case, there are N+1 unknowns requiringN+1 equations
for a solution.
Consider the Rth cell shown in Fig. 22.9. The complete distribution of shear flow around the cell is

given by the summation of the “open section” shear flow qb and the value of shear flow at the “cut,”
qs,0,R. We may therefore regard qs,0,R as a constant shear flow acting around the cell. The rate of twist
is again given by Eq. (16.22); thus,

dθ

dz
= 1

2ARG

∮
R

q
ds

t
= 1

2ARG

∮
R

(qb+ qs,0,R)ds
t

Fig. 22.9

Redundant shear flow in the Rth cell of an N-cell wing section subjected to shear.
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Fig. 22.10

Moment equilibrium of Rth cell.

By comparing with the pure torsion case, we deduce that

dθ

dz
= 1

2ARG

⎛
⎝−qs,0,R−1δR−1,R+ qs,0,RδR− qs,0,R+1δR+1,R+

∮
R

qb
ds

t

⎞
⎠ (22.10)

in which qb has previously been determined. There are N equations of the type (22.10) so that a further
equation is required to solve for the N+1 unknowns. This is obtained by considering the moment
equilibrium of the Rth cell in Fig. 22.10.
ThemomentMq,R produced by the total shear flowabout any convenientmoment centerO is given by

Mq,R =
∮
qRp0 ds (see Section 17.1)

Substituting for qR in terms of the “open section” shear flow qb and the redundant shear flow qs,0,R,
we have

Mq,R =
∮
R

qbp0 ds+ qs,0,R
∮
R

p0 ds

or

Mq,R =
∮
R

qbp0 ds+ 2ARqs,0,R

The sum of the moments from the individual cells is equivalent to the moment of the externally
applied loads about the same point. Thus, for the wing section of Fig. 22.8,

Sxη0− Syξ0 =
N∑
R=1
Mq,R =

N∑
R=1

∮
R

qbp0 ds+
N∑
R=1
2ARqs,0,R (22.11)
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If the moment center is chosen to coincide with the point of intersection of the lines of action of Sx and
Sy, Eq. (22.11) becomes

0=
N∑
R=1

∮
R

qbp0 ds+
N∑
R=1
2ARqs,0,R (22.12)

Example 22.3
The wing section of Example 22.1 (Fig. 22.3) carries a vertically upward shear load of 86.8kN in the
plane of the web 572. The section has been idealized such that the booms resist all the direct stresses,
while the walls are effective only in shear. If the shear modulus of all walls is 27600N/mm2 except for
the wall 78 for which it is three times this value, calculate the shear flow distribution in the section and
the rate of twist. Additional data are given in the table.

Wall Length (mm) Thickness (mm) Cell area (mm2)

12, 56 1023 1.22 AI=265 000
23 1274 1.63 AII=213 000
34 2200 2.03 AIII=413 000

483 400 2.64
572 460 2.64
61 330 1.63
78 1270 1.22

Choosing GREF as 27600N/mm2 then, from Eq. (22.9),

t∗78 = 3× 27600
27600

× 1.22= 3.66mm
Hence,

δ78 = 1270

3.66
= 347

Also,

δ12 = δ56 = 840 δ23 = 783 δ34 = 1083 δ38 = 57 δ84 = 95 δ87 = 347
δ27 = 68 δ75 = 106 δ16 = 202

We now “cut” the top skin panels in each cell and calculate the “open section” shear flows using
Eq. (19.6), which, since the wing section is idealized, singly symmetrical (as far as the direct stress-
carrying area is concerned) and is subjected to a vertical shear load only, reduces to

qb = −Sy
Ixx

n∑
r=1
Bryr (i)
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where, from Example 22.1, Ixx=809×106mm4. Thus, from Eq. (i),

qb = −86.8× 103
809× 106

n∑
r=1
Bryr = −1.07× 10−4

n∑
r=1
Bryr (ii)

Since qb=0 at each “cut,” then qb=0 for the skin panels 12, 23, and 34. The remaining qb shear flows
are now calculated using Eq. (ii). Note that the order of the numerals in the subscript of qb indicates the
direction of movement from boom to boom.

qb,27 = −1.07× 10−4× 3880× 230= −95.5N/mm

qb,16 = −1.07× 10−4× 2580× 165= −45.5N/mm

qb,65 = −45.5− 1.07× 10−4× 2580× (−165) = 0
qb,57 = −1.07× 10−4× 3880× (−230) = 95.5N/mm

qb,38 = −1.07× 10−4× 3230× 200= −69.0N/mm

qb,48 = −1.07× 10−4× 3230× (−200) = 69.0N/mm

Therefore, as qb,83=qb,48 (or qb,72=qb,57), qb,78=0. The distribution of the qb shear flows is shown in
Fig. 22.11. The values of δ and qb are now substituted in Eq. (22.10) for each cell in turn.

• For cell I,

dθ

dz
= 1

2× 265000GREF
[
qs,0,I(1083+ 95+ 57) − 57qs,0,II+ 69× 95+ 69× 57] (iii)

• For cell II,

dθ

dz
= 1

2× 213000GREF
[−57qs,0,I+ qs,0,II(783+ 57+ 347+ 68)

(iv)

− 68qs,0,III+ 95.5× 68− 69× 57]

Fig. 22.11

qb distribution (N/mm).
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• For cell III,

dθ

dz
= 1

2× 413000GREF [−68qs,0,II+ qs,0,III(840+ 68+ 106
(v)+ 840+ 202) + 45.5× 202− 95.5× 68− 95.5× 106]

The solely numerical terms in Eqs. (iii) through (v) represent
∮
R qb(ds/t) for each cell. Care must be

taken to ensure that the contribution of each qb value to this term is interpreted correctly. The path of the
integration follows the positive direction of qs,0 in each cell—in other words, counterclockwise. Thus,
the positive contribution of qb,83 to

∮
I qb(ds/t) becomes a negative contribution to

∮
II qb(ds/t) and so on.

The fourth equation required for a solution is obtained from Eq. (22.12) by taking moments about
the intersection of the x axis and the web 572. Thus,

0= −69.0× 250× 1270− 69.0× 150× 1270+ 45.5× 330× 1020
(vi)+2× 265000qs,0,I+ 2× 213000qs,0,II+ 2× 413000qs,0,III

Simultaneous solution of Eqs. (iii) through (vi) gives

qs,0,I = 5.5N/mm qs,0,II = 10.2N/mm qs,0,III = 16.5N/mm

Superimposing these shear flows on the qb distribution of Fig. 22.11, we obtain the final shear flow
distribution. Thus,

q34 = 5.5N/mm q23 = q87 = 10.2N/mm q12 = q56 = 16.5N/mm

q61 = 62.0N/mm q57 = 79.0N/mm q72 = 89.2N/mm

q48 = 74.5N/mm q83 = 64.3N/mm

Finally, from any of Eqs. (iii) through (v),

dθ

dz
= 1.16× 10−6 rad/mm

22.5 SHEAR CENTER
The position of the shear center of a wing section is found in an identical manner to that described
in Section 16.3. Arbitrary shear loads Sx and Sy are applied in turn through the shear center S, the
corresponding shear flow distributions are determined, and moments are taken about some convenient
point. The shear flow distributions are obtained as described previously in the shear of multicell wing
sections except that the N equations of the type (22.10) are sufficient for a solution, since the rate of
twist dθ /dz is zero for shear loads applied through the shear center.
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22.6 TAPERED WINGS
Wings are generally tapered in both spanwise and chordwise directions. The effects on the analysis of
taper in a single-cell beam have been discussed in Section 20.2. In a multicell wing section, the effects
are dealt with in an identical manner except that the moment equation (20.16) becomes, for an N-cell
wing section (see Figs. 20.5 and 22.8),

Sxη0− Syξ0 =
N∑
R=1

∮
R

qbp0 ds+
N∑
R=1
2ARqs,0,R−

m∑
r=1
Px,rηr +

m∑
r=1
Py,rξr (22.13)

Example 22.4
A two-cell beam has singly symmetrical cross sections 1.2m apart and tapers symmetrically in the
y direction about a longitudinal axis (Fig. 22.12). The beam supports loads which produce a shear force
Sy=10kN and a bending moment Mx=1.65kNm at the larger cross section; the shear load is applied
in the plane of the internal spar web. If booms 1 and 6 lie in a plane which is parallel to the yz plane,
calculate the forces in the booms and the shear flow distribution in the walls at the larger cross section.
The booms are assumed to resist all the direct stresses, while the walls are effective only in shear. The

Fig. 22.12

Tapered beam of Example 22.4.
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shear modulus is constant throughout, the vertical webs are all 1.0mm thick, while the remaining walls
are all 0.8mm thick:

Boom areas: B1 = B3 = B4 = B6 = 600mm2 B2 = B5 = 900mm2

At the larger cross section,

Ixx = 4× 600× 902+ 2× 900× 902 = 34.02× 106mm4

The direct stress in a boom is given by Eq. (15.18), in which Ixy=0 and My=0, that is,

σz,r = Mxyr
Ixx

from which

Pz,r = Mxyr
Ixx

Br

or

Pz,r = 1.65× 106yrBr
34.02× 106 = 0.08yrBr (i)

The value of Pz,r is calculated from Eq. (i) in column ② of Table 22.2; Px,r and Py,r follow from
Eqs. (20.10) and (20.9), respectively, in columns ⑤ and ⑥. The axial load Pr is given by [②2+
⑤2+⑥2]1/2 in column⑦ and has the same sign as Pz,r (see Eq. (20.12)). The moments of Px,r and Py,r
and columns ⑩ and are calculated for a moment center at the midpoint of the internal web, taking
counterclockwise moments as positive.

From column ⑤
6∑
r=1
Px,r = 0

(as would be expected from symmetry).

Table 22.2

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Pz,r Px,r Py,r Pr ξr ηr Px,rηr Py,rξr

Boom (N)
δxr

δz

δyr

δz
(N) (N) (N) (mm) (mm) (Nmm) (Nmm)

1 2619.0 0 0.0417 0 109.2 2621.3 400 90 0 43 680

2 3928.6 0.0833 0.0417 327.3 163.8 3945.6 0 90 −29 457 0

3 2619.0 0.1250 0.0417 327.4 109.2 2641.6 200 90 −29 466 21 840

4 −2619.0 0.1250 −0.0417 −327.4 109.2 −2641.6 200 90 −29 466 21 840

5 −3928.6 0.0833 −0.0417 −327.3 163.8 −3945.6 0 90 −29 457 0

6 −2619.0 0 −0.0417 0 109.2 −2621.3 400 90 0 −43 680
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From column ⑥
6∑
r=1
Py,r = 764.4N

From column ⑩
6∑
r=1
Px,rηr = −117846Nmm

From column
6∑
r=1
Py,rξr = −43680Nmm

From Eq. (20.15),

Sx,w = 0 Sy,w = 10× 103− 764.4= 9235.6N
Also, since Cx is an axis of symmetry, Ixy=0 and Eq. (19.6) for the “open section” shear flow reduces to

qb = −Sy,w
Ixx

n∑
r=1
Bryr

or

qb = − 9235.6

34.02× 106
n∑
r=1
Bryr = −2.715× 10−4

n∑
r=1
Bryr (ii)

“Cutting” the top walls of each cell and using Eq. (ii), we obtain the qb distribution shown in Fig. 22.13.
Evaluating δ for each wall and substituting in Eq. (22.10) gives the following:

For cell I,

dθ

dz
= 1

2× 36000G (760qs,0,I− 180qs,0,II− 1314) (iii)

For cell II,

dθ

dz
= 1

2× 72000G (−180qs,0,I+ 1160qs,0,II+ 1314) (iv)

Taking moments about the midpoint of web 25, we have, using Eq. (22.13),

0= −14.7× 180× 400+ 14.7× 180× 200+ 2× 36000qs,0,I+ 2× 72000qs,0,II
−117846− 43680

Fig. 22.13

qb (N/mm) distribution in beam section of Example 22.4 (view along z axis toward C).
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Fig. 22.14

Shear flow (N/mm) distribution in tapered beam of Example 22.4.

or

0= −690726+ 72000qs,0,I+ 144000qs,0,II (v)

Solving Eqs. (iii) through (iv) gives

qs,0,I = 4.6N/mm qs,0,II = 2.5N/mm

and the resulting shear flow distribution is shown in Fig. 22.14.

22.7 DEFLECTIONS
Deflections of multicell wings may be calculated by the unit load method in an identical manner to that
described in Section 19.4 for open and single-cell beams.

Example 22.5
Calculate the deflection at the free end of the two-cell beam shown in Fig. 22.15, allowing for both
bending and shear effects. The booms carry all the direct stresses, while the skin panels, of constant
thickness throughout, are effective only in shear.

Take E = 69000N/mm2 and G= 25900N/mm2

Boom areas: B1 = B3 = B4 = B6 = 650mm2 B2 = B5 = 1300mm2

The beam cross section is symmetrical about a horizontal axis and carries a vertical load at its free
end through the shear center. The deflection � at the free end is then, from Eqs. (19.17) and (19.19),

� =
2000∫
0

Mx,0Mx,1
EIxx

dz+
2000∫
0

⎛
⎝ ∫
section

q0q1
Gt

ds

⎞
⎠dz (i)

where

Mx,0 = −44.5× 103(2000− z) Mx,1 = −(2000− z)
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Fig. 22.15

Deflection of two-cell wing section.

and

Ixx = 4× 650× 1252+ 2× 1300× 1252 = 81.3× 106mm4

also,

Sy,0 = 44.5× 103N Sy,1 = 1
The q0 and q1 shear flow distributions are obtained as previously described (note dθ /dz=0 for a shear
load through the shear center) and are

q0,12 = 9.6N/mm q0,23 = −5.8N/mm q0,43 = 50.3N/mm

q0,45 = −5.8N/mm q0,56 = 9.6N/mm q0,61 = 54.1N/mm

q0,52 = 73.6N/mm at all sections of the beam

The q1 shear flows in this case are given by q0/44.5×103. Thus,∫
section

q0q1
Gt

ds= 1

25900× 2× 44.5× 103 (9.6
2× 250× 2+ 5.82× 500× 2

+ 50.32× 250+ 54.12× 250+ 73.62× 250)
=1.22× 10−3

Hence, from Eq. (i),

� =
2000∫
0

44.5× 103(2000− z)2
69000× 81.3× 106 dz+

2000∫
0

1.22× 10−3dz
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giving

� = 23.5mm

22.8 CUTOUTS IN WINGS
Wings, as well as fuselages, have openings in their surfaces to accommodate undercarriages, engine
nacelles and weapons installations, and so forth. In addition, inspection panels are required at specific
positions so that, as for fuselages, the loads in adjacent portions of the wing structure are modified.
Initially we shall consider the case of a wing subjected to a pure torque in which one bay of

the wing has the skin on its undersurface removed. The method is best illustrated by a numerical
example.

Example 22.6
The structural portion of a wing consists of a three-bay rectangular section box which may be assumed
to be firmly attached at all points around its periphery to the aircraft fuselage at its inboard end. The
skin on the undersurface of the central bay has been removed, and the wing is subjected to a torque of
10kNm at its tip (Fig. 22.16). Calculate the shear flows in the skin panels and spar webs, the loads in
the corner flanges, and the forces in the ribs on each side of the cutout, assuming that the spar flanges
carry all the direct loads, while the skin panels and spar webs are effective only in shear.

Fig. 22.16

Three-bay wing structure with cutout of Example 22.6.
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If thewing structurewere continuous and the effects of restrainedwarping at the built-in end ignored,
the shear flows in the skin panels would be given by Eq. (17.1), that is,

q = T

2A
= 10× 106
2× 200× 800 = 31.3N/mm

and the flanges would be unloaded. However, the removal of the lower skin panel in bay ② results in
a torsionally weak channel section for the length of bay ②, which must in any case still transmit the
applied torque to bay① and subsequently to the wing support points. Although open section beams are
inherently weak in torsion (see Section 17.2), the channel section in this case is attached at its inboard
and outboard ends to torsionally stiff closed boxes so that, in effect, it is built-in at both ends. An
alternative approach is to assume that the torque is transmitted across bay ② by the differential bending
of the front and rear spars. The bending moment in each spar is resisted by the flange loads P as shown,
for the front spar, in Fig. 22.17(a). The shear loads in the front and rear spars form a couple at any
station in bay ② which is equivalent to the applied torque. Thus, from Fig. 22.17(b),

800S = 10× 106Nmm

that is,

S = 12500N

The shear flow q1 in Fig. 22.17(a) is given by

q1 = 12500

200
= 62.5N/mm

Fig. 22.17

Differential bending of front spar.
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Midway between stations 1500 and 3000 a point of contraflexure occurs in the front and rear spars so
that at this point the bending moment is zero. Hence,

200P = 12500× 750Nmm
so that

P = 46875N
Alternatively, P may be found by considering the equilibrium of either of the spar flanges. Thus,

2P = 1500q1 = 1500× 62.5N
whence

P = 46875N
The flange loadsP are reacted by loads in the flanges of bays① and③. These flange loads are transmitted
to the adjacent spar webs and skin panels as shown in Fig. 22.18 for bay ③ and modify the shear flow
distribution given by Eq. (17.1). For equilibrium of flange 1,

1500q2− 1500q3 = P = 46875N
or

q2− q3 = 31.3 (i)

Fig. 22.18

Loads on bay ③ of the wing of Example 22.6.
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The resultant of the shear flows q2 and q3 must be equivalent to the applied torque. Hence, for moments
about the center of symmetry at any section in bay ③ and using Eq. (19.10),

200× 800q2+ 200× 800q3 = 10× 106Nmm
or

q2+ q3 = 62.5 (ii)

Solving Eqs. (i) and (ii), we obtain

q2 = 46.9N/mm q3 = 15.6N/mm

Comparison with the results of Eq. (17.1) shows that the shear flows are increased by a factor of 1.5 in
the upper and lower skin panels and decreased by a factor of 0.5 in the spar webs.
The flange loads are in equilibrium with the resultants of the shear flows in the adjacent skin panels

and spar webs. Thus, for example, in the top flange of the front spar,

P(st.4500) = 0
P(st.3000) = 1500q2− 1500q3 = 46875N (compression)
P(st.2250) = 1500q2− 1500q3− 750q1 = 0

The loads along the remainder of the flange follow from antisymmetry, giving the distribution shown
in Fig. 22.19. The load distribution in the bottom flange of the rear spar will be identical to that
shown in Fig. 22.19, while the distributions in the bottom flange of the front spar and the top flange
of the rear spar will be reversed. We note that the flange loads are zero at the built-in end of the wing
(station 0). Generally, however, additional stresses are induced by the warping restraint at the built-in
end (see [Ref. 1]). The loads on the wing ribs on either inboard or outboard end of the cutout are found
by considering the shear flows in the skin panels and spar webs immediately inboard and outboard of
the rib. Thus, for the rib at station 3000, we obtain the shear flow distribution shown in Fig. 22.20.
In Example 22.6, we implicitly assumed in the analysis that the local effects of the cutout were

completely dissipated within the length of the adjoining bays which were equal in length to the cutout
bay. The validity of this assumption relies on St. Venant’s principle (Section 2.4). It may generally be

Fig. 22.19

Distribution of load in the top flange of the front spar of the wing of Example 22.6.
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Fig. 22.20

Shear flows (N/mm) on wing rib at station 3000 in the wing of Example 22.6.

Fig. 22.21

Wing box of Example 22.7.

assumed therefore that the effects of a cutout are restricted to spanwise lengths of the wing equal to the
length of the cutout on both inboard and outboard ends of the cutout bay.
We shall now consider the more complex case of a wing having a cutout and subjected to shear loads

which produce both bending and torsion. Again, the method is illustrated by a numerical example.

Example 22.7
Awing box has the skin panel on its undersurface removed between stations 2000 and 3000 and carries
lift and drag loads which are constant between stations 1000 and 4000, as shown in Fig. 22.21(a).
Determine the shear flows in the skin panels and spar webs and also the loads in the wing ribs at the
inboard and outboard ends of the cutout bay. Assume that all bending moments are resisted by the spar
flanges, while the skin panels and spar webs are effective only in shear.

The simplest approach is first to determine the shear flows in the skin panels and spar webs as though
the wing box were continuous and then to apply an equal and opposite shear flow to that calculated
around the edges of the cutout. The shear flows in the wing box without the cutout will be the same in
each bay and are calculated using the method described in Section 19.3 and illustrated in Example 19.4.
This gives the shear flow distribution shown in Fig. 22.22.
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Fig. 22.22

Shear flow (N/mm) distribution at any station in the wing box of Example 22.7 without cutout.

Fig. 22.23

Correction shear flows in the cutout bay of the wing box of Example 22.7.

We now consider bay ② and apply a shear flow of 75.9N/mm in the wall 34 in the opposite sense
from that shown in Fig. 22.22. This reduces the shear flow in the wall 34 to zero and, in effect, restores
the cutout to bay②. The shear flows in the remaining walls of the cutout bay will no longer be equivalent
to the externally applied shear loads so that corrections are required. Consider the cutout bay (Fig. 22.23)
with the shear flowof 75.9N/mmapplied in the opposite sense to that shown in Fig. 22.22. The correction
shear flows q′

12, q
′
32, and q

′
14 may be found using statics. Thus, resolving forces horizontally, we have

800q′
12 = 800× 75.9N

from which

q′
12 = 75.9N/mm

Resolving forces vertically,

200q′
32 = 50q′

12− 50× 75.9− 300q′
14 = 0 (i)

and taking moments about O in Fig. 22.21(b), we obtain

2× 52000q′
12− 2× 40000q′

32+ 2× 52000× 75.9− 2× 60000q′
14 = 0 (ii)
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Solving Eqs. (i) and (ii) gives

q′
32 = 117.6N/mm q′

14 = 53.1N/mm

The final shear flows in bay ② are found by superimposing q′
12, q

′
32, and q

′
14 on the shear flows in

Fig. 22.22, giving the distribution shown in Fig. 22.24. Alternatively, these shear flows could have been
found directly by considering the equilibrium of the cutout bay under the action of the applied shear
loads.
The correction shear flows in bay ② (Fig. 22.23) will also modify the shear flow distributions in

bays① and③. The correction shear flows to be applied to those shown in Fig. 22.22 for bay ③ (those in
bay ① will be identical) may be found by determining the flange loads corresponding to the correction
shear flows in bay ②.
It can be seen from the magnitudes and directions of these correction shear flows (Fig. 22.23) that at

any section in bay ②, the loads in the upper and lower flanges of the front spar are equal in magnitude
but opposite in direction, similar for the rear spar. Thus, the correction shear flows in bay ② produce
an identical system of flange loads to that shown in Fig. 22.17 for the cutout bays in the wing structure
of Example 22.6. It follows that these correction shear flows produce differential bending of the front
and rear spars in bay ② and that the spar bending moments and hence the flange loads are zero at the
midbay points. Therefore, at station 3000, the flange loads are

P1 = (75.9+ 53.1) × 500= 64500N (compression)
P4 = 64500N (tension)
P2 = (75.9+ 117.6) × 500= 96750N (tension)
P3 = 96750N (tension)

These flange loads produce correction shear flows q′′
21, q

′′
43, q

′′
23, and q

′′
41 in the skin panels and spar

webs of bay ③, as shown in Fig. 22.25. Thus, for equilibrium of flange 1,

1000q′′
41+ 1000q′′

21 = 64500N (iii)

and for equilibrium of flange 2,

1000q′′
21+ 1000q′′

23 = 96750N (iv)

Fig. 22.24

Final shear flows (N/mm) in the cutout bay of the wing box of Example 22.7.
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Fig. 22.25

Correction shear flows in bay ③ of the wing box of Example 22.7.

For equilibrium in the chordwise direction at any section in bay, ③

800q′′
21 = 800q′′

43

or

q′′
21 = q′′

43 (v)

Finally, for vertical equilibrium at any section in bay, ③

300q′′
41+ 50q′′

43+ 50q′′
21− 200q′′

23 = 0 (vi)

Simultaneous solution of Eqs. (iii) through (vi) gives

q′′
21 = q′′

43 = 38.0N/mm q′′
23 = 58.8N/mm q′′

41 = 26.6N/mm

Superimposing these correction shear flows on those shown in Fig. 22.22 gives the final shear flow
distribution in bay③ as shown in Fig. 22.26. The rib loads at stations 2000 and 3000 are found as before
by adding algebraically the shear flows in the skin panels and spar webs on each side of the rib. Thus,
at station 3000, we obtain the shear flows acting around the periphery of the rib as shown in Fig. 22.27.
The shear flows applied to the rib at the inboard end of the cutout bay will be equal in magnitude but
opposite in direction.
Note that in this example, only the shear loads on the wing box between stations 1000 and 4000 are

given. We cannot therefore determine the final values of the loads in the spar flanges, since we do not
know the values of the bending moments at these positions caused by loads acting on other parts of the
wing.
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Fig. 22.26

Final shear flows in bay ③ (and bay ①) of the wing box of Example 22.7.

Fig. 22.27

Shear flows (N/mm) applied to the wing rib at station 3000 in the wing box of Example 22.7.

References
[1] Megson, T.H.G., Aircraft Structures for Engineering Students, 4th edition, Elsevier, 2007.

Problems
P.22.1 The central cell of a wing has the idealized section shown in Fig. P.22.1. If the lift and drag loads on the
wing produce bending moments of −120000Nm and −30000Nm, respectively, at the section shown, calculate
the direct stresses in the booms. Neglect axial constraint effects and assume that the lift and drag vectors are in
vertical and horizontal planes.

Boom areas: B1 = B4 = B5 = B8 = 1000mm2
B2 = B3 = B6 = B7 = 600mm2

Fig. P.22.1
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Ans. σ1=−190.7N/mm2 σ2=−181.7N/mm2 σ3 = −172.8N/mm2

σ4=−163.8N/mm2 σ5=140N/mm2 σ6=164.8N/mm2

σ7=189.6N/mm2 σ8=214.4N/mm2.

P.22.2 Figure P.22.2 shows the cross section of a two-cell torque box. If the shear stress in any wall must not
exceed 140N/mm2, find the maximum torque which can be applied to the box.

If this torque were applied at one end and resisted at the other end of such a box of span 2500mm, find the twist
in degrees of one end relative to the other and the torsional rigidity of the box. The shearmodulus G=26600N/mm2
for all walls. Data are as follows:

Shaded areas: A34 = 6450mm2, A16 = 7750mm2
Wall lengths: s34 = 250mm, s16 = 300mm

Wall thickness: t12 = 1.63mm, t34 = 0.56mm
t23 = t45 = t56 = 0.92mm
t61 = 2.03mm
t25 = 2.54mm

Ans. T=102417Nm, θ =1.46◦, GJ=10×1012 Nmm2/rad.

Fig. P.22.2

P.22.3 Determine the torsional stiffness of the four-cell wing section shown in Fig. P.22.3. Data are as follows:

Wall 12 23 34
78 67 56 45◦ 45i 36 27 18

Peripheral length (mm) 762 812 812 1525 356 406 356 254
Thickness (mm) 0.915 0.915 0.915 0.711 1.220 1.625 1.220 0.915

Cell areas (mm2) AI=161500 AII=291000
AIII=291000 AIV=226000

Ans. 522.5×106GNmm2/rad.
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Fig. P.22.3 Fig. P.22.4

P.22.4 Determine the shear flow distribution for a torque of 56500Nm for the three-cell section shown in
Fig. P.22.4. The section has a constant shear modulus throughout.

Wall Length (mm) Thickness (mm) Cell Area (mm2)

12U 1084 1.220 I 108 400
12L 2160 1.625 II 202 500
14, 23 127 0.915 III 528 000
34U 797 0.915
34L 797 0.915

Ans. q12U =25.4N/mm q21L =33.5N/mm q14=q32=8.1N/mm
q43U =13.4N/mm q34L =5.3N/mm.

P.22.5 The idealized cross section of a two-cell thin-walled wing box is shown in Fig. P.22.5. If the wing box
supports a load of 44500N acting along the web 25, calculate the shear flow distribution. The shear modulus G is
the same for all walls of the wing box.

Ans. q16=33.9N/mm q65=q21=1.1N/mm
q45=q23=7.2N/mm q34=20.8N/mm
q25=73.4N/mm.

Wall Length (mm) Thickness (mm) Boom Area (mm2)

16 254 1.625 1, 6 1290
25 406 2.032 2, 5 1936
34 202 1.220 3, 4 645
12, 56 647 0.915
23, 45 775 0.559

Cell areas: AI=232 000 mm2, AII=258 000 mm2.
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Fig. P.22.5

P.22.6 Figure P.22.6 shows a singly symmetric, two-cell wing section in which all direct stresses are carried by the
booms and shear stresses alone being carried by the walls. All walls are flat with the exception of the nose portion
45. Find the position of the shear center S and the shear flow distribution for a load of Sy=66750N through S.
Tabulated below are lengths, thicknesses, and shear moduli of the shear-carrying walls. Note that dotted line 45 is
not a wall.

Fig. P.22.6

Wall Length (mm) Thickness (mm) G(N/mm2) Boom Area (mm2)

34, 56 380 0.915 20 700 1, 3, 6, 8 1290
12, 23, 67, 78 356 0.915 24 200 2, 4, 5, 7 645
36, 81 306 1.220 24 800
45 610 1.220 24 800

Nose area N1=51 500 mm2.

Ans. xS=160.1mm q12=q78=17.8N/mm q32=q76=18.5N/mm
q63=88.2N/mm q43=q65=2.9N/mm q54=39.2N/mm
q81=90.4N/mm.

P.22.7 A singly symmetric wing section consists of two closed cells and one open cell (see Fig. P.22.7). The webs
25, 34 and the walls 12, 56 are straight, while all other walls are curved. All walls of the section are assumed to be
effective in carrying shear stresses only, direct stresses being carried by booms 1 to 6. Calculate the distance xS of
the shear center S aft of the web 34. The shear modulus G is the same for all walls.

Ans. 241.4mm.
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Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 510 0.559 1, 6 645 I 93 000
23, 45 765 0.915 2, 5 1290 II 258 000
34o 1015 0.559 3, 4 1935
34i 304 2.030
25 304 1.625

Fig. P.22.7

P.22.8 A portion of a tapered, three-cell wing has singly symmetrical idealized cross sections 1000mm apart as
shown in Fig. P.22.8. A bending momentMx=1800Nm and a shear load Sy=12000N in the plane of the web 52
are applied at the larger cross section. Calculate the forces in the booms and the shear flow distribution at this cross
section. The modulus G is constant throughout. Section dimensions at the larger cross section are given below.

Fig. P.22.8

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 600 1.0 1, 6 600 I 100 000
23, 45 800 1.0 2, 5 800 II 260 000
34o 1200 0.6 3, 4 800 III 180 000
34i 320 2.0
25 320 2.0
16 210 1.5
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Ans. P1=−P6=1200N P2=−P5=2424N P3=−P4=2462N
q12=q56=3.74N/mm q23=q45=3.11N/mm q34o =0.06N/mm
q43i =12.16N/mm q52=14.58N/mm q61=11.22N/mm.

P.22.9 A portion of a wing box is built-in at one end and carries a shear load of 2000N through its shear center
and a torque of 1000Nm as shown in Fig. 22.9. If the skin panel in the upper surface of the inboard bay is removed,
calculate the shear flows in the spar webs and remaining skin panels, the distribution of load in the spar flanges,
and the loading on the central rib. Assume that the spar webs and skin panels are effective in resisting shear stresses
only.

Ans. Bay①: q in spar webs=7.5N/mm
Bay②: q in spar webs=1.9N/mm, in skin panels=9.4N/mm
Flange loads (2): at built-in end=1875N (compression)

at central rib=5625N (compression)
Rib loads: q (horizontal edges)=9.4N/mm

q (vertical edges)=9.4N/mm.

Fig. 22.9
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Aircraft are constructed primarily from thin metal skins which are capable of resisting in-plane tension
and shear loads but buckle under comparatively low values of in-plane compressive loads. The skins
are therefore stiffened by longitudinal stringers which resist the in-plane compressive loads and, at
the same time, resist small distributed loads normal to the plane of the skin. The effective length in
compression of the stringers is reduced, in the case of fuselages, by transverse frames or bulkheads or,
in the case of wings, by ribs. In addition, the frames and ribs resist concentrated loads in transverse
planes and transmit them to the stringers and the plane of the skin. Thus, cantilever wings may be bolted
to fuselage frames at the spar caps, while undercarriage loads are transmitted to the wing through spar
and rib attachment points.

23.1 PRINCIPLES OF STIFFENER/WEB CONSTRUCTION
Generally, frames and ribs are themselves fabricated from thin sheets of metal and therefore require
stiffening members to distribute the concentrated loads to the thin webs. If the load is applied in the
plane of a web, the stiffeners must be aligned with the direction of the load. Alternatively, if this is not
possible, the load should be applied at the intersection of two stiffeners so that each stiffener resists the
component of load in its direction. The basic principles of stiffener/web construction are illustrated in
Example 23.1.

Example 23.1
A cantilever beam (Fig. 23.1) carries concentrated loads, as shown. Calculate the distribution of stiffener
loads and the shear flow distribution in the web panels assuming that the latter is effective only in
shear.

We note that stiffeners HKD and JK are required at the point of application of the 4000N load to
resist its vertical and horizontal components. A further transverse stiffener GJC is positioned at the
unloaded end J of the stiffener JK, since stress concentrations are produced if a stiffener ends in the
center of a web panel. We note also that the web panels are only effective in shear so that the shear flow
is constant throughout a particular web panel; the assumed directions of the shear flows are shown in
Fig. 23.1.
It is instructive at this stage to examine the physical role of the different structural components in

supporting the applied loads. Generally, stiffeners are assumed to withstand axial forces only so that

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00023-3 619
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Fig. 23.1

Cantilever beam of Example 23.1.

Fig. 23.2

Free body diagrams of stiffeners JK and HKD in the beam of Example 23.1.

the horizontal component of the load at K is equilibrated locally by the axial load in the stiffener JK
and not by the bending of stiffener HKD. By the same argument, the vertical component of the load at
K is resisted by the axial load in the stiffener HKD. These axial stiffener loads are equilibrated in turn
by the resultants of the shear flows q1 and q2 in the web panels CDKJ and JKHG. Thus, we see that
the web panels resist the shear component of the externally applied load and at the same time transmit
the bending and axial load of the externally applied load to the beam flanges; subsequently, the flange
loads are reacted at the support points A and E.
Consider the free body diagrams of the stiffeners JK and HKD shown in Fig. 23.2(a) and (b).



23.1 Principles of Stiffener/Web Construction 621

Fig. 23.3

Equilibrium of stiffener CJG in the beam of Example 23.1.

From the equilibrium of stiffener JK, we have

(q1− q2) × 250= 4000sin60◦ = 3464.1N (i)

and from the equilibrium of stiffener HKD,

200q1+ 100q2 = 4000cos60◦ = 2000N (ii)

Solving Eqs. (i) and (ii), we obtain

q1 = 11.3N/mm q2 = −2.6N/mm

The vertical shear force in the panel BCGF is equilibrated by the vertical resultant of the shear flow q3.
Thus,

300q3 = 4000cos60◦ = 2000N
from which

q3 = 6.7N/mm

Alternatively, q3 may be found by considering the equilibrium of the stiffener CJG. From Fig. 23.3,

300q3 = 200q1+ 100q2
or

300q3 = 200× 11.3− 100× 2.6
from which

q3 = 6.7N/mm

The shear flow q4 in the panel ABFEmay be found using either of the abovemethods. Thus, considering
the vertical shear force in the panel,

300q4 = 4000cos60◦ + 5000= 7000N
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from which

q4 = 23.3N/mm

Alternatively, from the equilibrium of stiffener BF,

300q4− 300q3 = 5000N
from which

q4 = 23.3N/mm

The flange and stiffener load distributions are calculated in the same way and are obtained from the
algebraic summation of the shear flows along their lengths. For example, the axial load PA at A in the
flange ABCD is given by

PA = 250q1+ 250q3+ 250q4
or

PA = 250× 11.3+ 250× 6.7+ 250× 23.3= 10325N (tension)

Similarly,

PE = −250q2− 250q3− 250q4
that is,

PE = 250× 2.6− 250× 6.7− 250× 23.3= −6850N (compression)

The complete load distribution in each flange is shown in Fig. 23.4. The stiffener load distributions are
calculated in the same way and are shown in Fig. 23.5.
The distribution of flange load in the baysABFE andBCGF could have been obtained by considering

the bending and axial loads on the beam at any section. For example, at the section AE, we can replace
the actual loading system by a bending moment

MAE = 5000× 250+ 2000× 750− 3464.1× 50= 2576800Nmm
and an axial load acting midway between the flanges (irrespective of whether or not the flange areas are
symmetrical about this point) of

P = 3464.1N
Thus,

PA = 2576800

300
+ 3464.1

2
= 10321N (tension)

and

PE = −2576800
300

+ 3464.1

2
= −6857N (compression)
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Fig. 23.4

Load distributions in flanges of the beam of Example 23.1.

Fig. 23.5

Load distributions in stiffeners of the beam of Example 23.1.

This approach cannot be used in the bay CDHG except at the section CJG, since the axial load in the
stiffener JK introduces an additional unknown.
The above analysis assumes that the web panels in beams of the type shown in Fig. 23.1 resist pure

shear along their boundaries. In Chapter 9, we saw that thin webs may buckle under the action of such
shear loads, producing tension field stresses which, in turn, induce additional loads in the stiffeners and
flanges of beams. The tension field stresses may be calculated separately by the methods described in
Chapter 9 and then superimposed on the stresses determined as described above.
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So far we have been concernedwithweb/stiffener arrangements inwhich the loads have been applied
in the plane of the web so that two stiffeners are sufficient to resist the components of a concentrated
load. Frequently, loads have an out-of-plane component, in which case the structure should be arranged
so that two webs meet at the point of load application with stiffeners aligned with the three component
directions (Fig. 23.6). In some situations, it is not practicable to have two webs meeting at the point
of load application so that a component normal to a web exists. If this component is small, it may be
resisted in bending by an in-plane stiffener; otherwise, an additional member must be provided spanning
between adjacent frames or ribs, as shown in Fig. 23.7. In general, no normal loads should be applied
to an unsupported web no matter how small their magnitude.

Fig. 23.6

Structural arrangement for an out-of-plane load.

Fig. 23.7

Support of load having a component normal to a web.
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23.2 FUSELAGE FRAMES
We have noted that fuselage frames transfer loads to the fuselage shell and provide column support for
the longitudinal stringers. The frames generally take the form of open rings so that the interior of the
fuselage is not obstructed. They are connected continuously around their peripheries to the fuselage
shell and are not necessarily circular in form but will usually be symmetrical about a vertical axis.
A fuselage frame is in equilibrium under the action of any external loads and the reaction shear

flows from the fuselage shell. Suppose that a fuselage frame has a vertical axis of symmetry and carries
a vertical external loadW , as shown in Fig. 23.8(a) and (b). The fuselage shell/stringer section has been
idealized such that the fuselage skin is effective only in shear. Suppose also that the shear force in the
fuselage immediately to the left of the frame is Sy,1 and that the shear force in the fuselage immediately
to the right of the frame is Sy,2; clearly, Sy,2=Sy,1−W . Sy,1, and Sy,2 generate shear flow distributions q1
and q2, respectively, in the fuselage skin, each given by Eq. (21.1), in which Sx,1=Sx,2=0, and Ixy=0
(Cy is an axis of symmetry). The shear flow qf transmitted to the periphery of the frame is equal to the
algebraic sum of q1 and q2, that is,

qf = q1− q2
Thus, substituting for q1 and q2 obtained from Eq. (21.1) and noting that Sy,2=Sy,1−W , we have

qf = −W
Ixx

n∑
r=1

Bryr + qs,0

in which qs,0 is calculated using Eq. (16.17), where the shear load is W and

qb = −W
Ixx

n∑
r=1

Bryr

Fig. 23.8

Loads on a fuselage frame.
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The method of determining the shear flow distribution applied to the periphery of a fuselage frame is
identical to the method of solution (or the alternative method) of Example 21.2.
Having determined the shear flow distribution around the periphery of the frame, the frame itself

may be analyzed for distributions of bending moment, shear force, and normal force, as described in
Section 5.4.

23.3 WING RIBS
Wing ribs perform similar functions to those performed by fuselage frames. They maintain the shape of
the wing section, assist in transmitting external loads to the wing skin, and reduce the column length of
the stringers. Their geometry, however, is usually different in that they are frequently of unsymmetrical
shape and possess webs which are continuous except for lightness holes and openings for control runs.
Wing ribs are subjected to loading systems which are similar to those applied to fuselage frames.

External loads applied in the plane of the rib produce a change in shear force in the wing across the
rib; this induces reaction shear flows around its periphery. These are calculated using the methods
described in Chapters 16 and 22. To illustrate the method of rib analysis, we shall use the example of a
three-flange wing section in which, as we noted in Section 22.1, the shear flow distribution is statically
determinate.

Example 23.2
Calculate the shear flows in the web panels and the axial loads in the flanges of the wing rib shown in
Fig. 23.9. Assume that the web of the rib is effective only in shear, while the resistance of the wing to
bending moments is provided entirely by the three flanges 1, 2, and 3.

Since the wing bending moments are resisted entirely by the flanges 1, 2, and 3, the shear flows
developed in the wing skin are constant between the flanges. Using themethod described in Section 22.1
for a three-flange wing section, we have, resolving forces horizontally,

600q12− 600q23 = 12000N (i)

Fig. 23.9

Wing rib of Example 23.2.
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Resolving vertically

300q31− 300q23 = 15000N (ii)

Taking moments about flange 3,

2(50000+ 95000)q23+ 2× 95000q12 = −15000× 300Nmm (iii)

Solution of Eqs. (i) through (iii) gives

q12 = 13.0N/mm q23 = −7.0N/mm q31 = 43.0N/mm

Consider now the nose portion of the rib shown in Fig. 23.10, and suppose that the shear flow in the
web immediately to the left of the stiffener 24 is q1. The total vertical shear force Sy,1 at this section is
given by

Sy,1 = 7.0× 300= 2100N

The horizontal components of the rib flange loads resist the bending moment at this section. Thus,

Px,4 = Px,2 = 2× 50000× 7.0
300

= 2333.3N

The corresponding vertical components are then

Py,2 = Py,4 = 2333.3 tan15◦ = 625.2N

Fig. 23.10

Equilibrium of nose portion of the rib.
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Fig. 23.11

Equilibrium of rib forward of intermediate stiffener 56.

Thus, the shear force carried by the web is 2100−2×625.2=849.6N. Hence,

q1 = 849.6

300
= 2.8N/mm

The axial loads in the rib flanges at this section are given by

P2 = P4 = (2333.32+ 625.22)1/2 = 2415.6N
The rib flange loads and web panel shear flows, at a vertical section immediately to the left of the
intermediate web stiffener 56, are found by considering the free body diagram shown in Fig. 23.11. At
this section, the rib flanges have zero slope so that the flange loads P5 and P6 are obtained directly from
the value of bending moment at this section. Thus,

P5 = P6 = 2[(50000+ 46000) × 7.0− 49000× 13.0]/320= 218.8N
The shear force at this section is resisted solely by the web. Hence,

320q2 = 7.0× 300+ 7.0× 10− 13.0× 10= 2040N
so that

q2 = 6.4N/mm

The shear flow in the rib immediately to the right of stiffener 56 is found most simply by considering
the vertical equilibrium of stiffener 56 as shown in Fig. 23.12. Thus,

320q3 = 6.4× 320+ 15000
which gives

q3 = 53.3N/mm
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Fig. 23.12

Equilibrium of stiffener 56.

Fig. 23.13

Equilibrium of the rib forward of stiffener 31.

Finally, we shall consider the rib flange loads and the web shear flow at a section immediately forward
of stiffener 31. From Fig. 23.13, in which we take moments about the point 3,

M3 = 2[(50000+ 95000) × 7.0− 95000× 13.0]+ 15000× 300= 4.06× 106Nmm

The horizontal components of the flange loads at this section are then

Px,1 = Px,3 = 4.06× 106
300

= 13533.3N

and the vertical components are

Py,1 = Py,3 = 3626.2N



630 CHAPTER 23 Fuselage Frames and Wing Ribs

Hence,

P1 = P3 =
√
13533.32+ 3626.22 = 14010.7N

The total shear force at this section is 15000+300×7.0=17100N. Therefore, the shear force resisted
by the web is 17100−2×3626.2=9847.6N so that the shear flow q3 in the web at this section is

q3 = 9847.6

300
= 32.8N/mm

Problems
P.23.1 The beam shown in Fig. P.23.1 is simply supported at each end and carries a load of 6000N. If all direct
stresses are resisted by the flanges and stiffeners and the web panels are effective only in shear, calculate the
distribution of axial load in the flange ABC and the stiffener BE and the shear flows in the panels.

Ans. q(ABEF)=4N/mm, q(BCDE)=2N/mm
PBE increases linearly from zero at B to 6000N (tension) at E
PAB and PCB increase linearly from zero at A and C to 4000N (compression) at B.

Fig. P.23.1

P.23.2 Calculate the shear flows in the web panels and direct load in the flanges and stiffeners of the beam shown
in Fig. P.23.2 if the web panels resist shear stresses only.

Ans. q1 = 21.6N/mm q2 = −1.6N/mm q3 = 10N/mm

PC = 0 PB = 6480N (tension) PA = 9480N (tension)
PF = 0 PG = 480N (tension) PH = 2520N (compression)
PE in BEG= 2320N (compression) PD in ED= 6928N (tension)
PD in CD= 4320N (tension) PD in DF = 320N (tension).



Problems 631

Fig. P.23.2

P.23.3 A three-flange wing section is stiffened by the wing rib shown in Fig. P.23.3. If the rib flanges and stiffeners
carry all the direct loads, while the rib panels are effective only in shear, calculate the shear flows in the panels and
the direct loads in the rib flanges and stiffeners.

Ans. q1 = 4.0N/mm q2 = 26.0N/mm q3 = 6.0N/mm

P2 in 12= −P3 in 43= 1200N (tension) P5 in 154= 2000N (tension)
P3 in 263= 8000N (compression) P5 in 56= 12000N (tension)
P6 in 263= 6000N (compression).

Fig. P.23.3



This page intentionally left blank



Index

A
Airframe loads, 379–399
1 – cosine gust, 394, 395
aircraft inertia loads, 379–385
graded gust, 394, 397
gust alleviation factor, 397
gust envelope, 398
gust loads, 393–399
normal accelerations associated with various types

of maneuver, 391–393
correctly banked turn, 392–393
steady pull-out, 391, 392

power spectral analysis, 395
sharp-edged gust, 394–397
symmetric maneuver loads, 386–391
general case, 387–391
level flight, 386–387

Airworthiness, 373–378
factors of safety-flight envelope, 373–375
fatigue, see Fatigue
flight envelope, 374
limit load, 373, 375
load factor determination, 375–378
proof factor, 373
proof load, 373
ultimate factor, 373
ultimate load, 373
uncertainties in design/structural deterioration,
375–376

variation in structural strength, 376
Airy stress function, 48
Anticlastic bending, 432
Anticlastic surface, 222

B
Basic elasticity, 3–41
Beam-columns, 266–270
Bending of an end-loaded cantilever, 55–60
effect of shear strains, 59

Bending of open and closed section thin-walled beams,
423–471

anticlastic bending, 432
applicability of bending theory, 466
calculation of section properties, 456–466
approximations for thin-walled sections,
461–466

parallel axes theorem, 456
product second moment of area, 460, 461
second moments of area of standard sections,
457–460

theorem of perpendicular axes, 457

deflections due to bending, 441–456
singularity functions (Macauley’s method), 448–449

load intensity, shear force, and bending moment
relationships, 440–441

symmetrical bending, 424–432
assumptions, 424
center, radius of curvature, 425
direct stress distribution, 425–432
examples of symmetrical sections, 425
neutral axis, 424
neutral plane, 423, 424

temperature effects, 466–471
unsymmetrical bending, 433–441
direct stress distribution, 435–438
position of neutral axis, 438
resolution of bending moments, 435
sign conventions and notation, 433

Bending of thin plates, see Plates
Bending rigidity of a beam, 119
Bifurcation point, 257
Biharmonic equation, 48
Body forces, 6
boundary conditions, 9, 10
compatibility equations, 24–25
equations of equilibrium, 7, 9

Bredt-Batho theory, see Torsion of closed section beams
Buckling
columns, see Columns
plates, see Plates

Bulk modulus, 31

C
Columns, 253–286
bifurcation point, 257
buckling load for a pin-ended column, 254–257
modes of buckling, 255

critical stress, 255, 256
definition of buckling load for a perfect column, 254
effect of initial imperfections, 263–266
Southwell plot, 265

effective length, 256
effective lengths of columns having varying end

conditions, 256
eigenfunctions, eigenvalues, 256
energy (Rayleigh–Ritz) method for the calculation of

buckling loads, 273–274
Euler buckling, 253
flexural–torsional buckling of thin-walled columns,

274–286
inelastic buckling, 259–263
reduced elastic modulus, 260

633
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Columns, inelastic buckling (continued)
reduced modulus theory, 260–262
tangent modulus, 259
tangent modulus theory, 262

primary instability, 253
secondary instability, 253
slenderness ratio, 255
stability of beams under transverse and axial loads

(beam-columns), 266–270
Combined open and closed section beams, 529–535
bending, 529
shear, 529–532
torsion, 533–534

Compatibility equation, 24–25
Complementary energy, see Energy methods
Complementary shear stress, 8
Components of stress, 6
Composite materials, 331–333
carbon fiber reinforced plastics (CFRP), 332
glass reinforced plastic (GRP), 331

Connections, see Structural components of aircraft
Crack propagation, see Fatigue

D
Deflection of thin plates, see Plates
Deflection of thin-walled beams due to bending, shear

and torsion, 553–556
Deflections of beams due to bending, 441–456
Determination of strains on inclined planes, 25–27
Determination of stresses on inclined planes, 10–14
Diagonal tension, see Plates

E
Effective length of a column, see Columns
Elasticity
basic elasticity, 3–41
torsion of solid sections, 65–82
two-dimensional problems, 45–60

Energy methods, 111–158, 270–274
bending of thin plates, 241–249
energy method for the calculation of buckling loads
in columns, 270–274
in plates, 293–296

flexibility method, 141–147
influence or flexibility coefficient, 151

principle of superposition, 151
principle of the stationary value of the total complementary

energy, 113–114
application to deflection problems, 114–122
application to the solution of statically indeterminate
systems, 122–138

fictitious or dummy load method, 116
unit load method, 138–141

principle of the stationary value of the total potential
energy, 148–151

reciprocal theorem, 151–155
self-straining trusses, 145–147
strain energy and complementary energy, 111–113
temperature effects, 156–158
total potential energy, 147–148

Euler buckling, 253, see Columns
Experimental determination of critical load for a thin

plate, 298
Experimental measurement of surface strains,

37–41
strain gauge rosette, 37

F
Fabrication of structural components, see Structural

components of aircraft
Factors, of safety flight envelope, see Airworthiness
Fail-safe structure, see Fatigue
Failure stress in plates and stiffened panels, see Plates
Fatigue, 347–348, 403–420
corrosion fatigue, 403
crack propagation, 414–419
crack tip plasticity, 417
fracture toughness, 417
modes of crack growth, 415
rates, 418–419
stress concentration factor, 414–417
stress field in vicinity of a crack, 415
stress intensity factor, 414

cycle fatigue, 403
designing against fatigue, 404–405
fatigue load spectrum, 404
gust exceedance, 405
gust frequency curves, 405

endurance limit, 347
Miner’s cumulative damage theory, 348, 407
S-n curves, 347, 376, 377, 406

fatigue strength, 347
of components, 405–409
confidence limits, 406
Goodman diagram, 407
scatter factor, 409

fretting fatigue, 403
prediction of aircraft fatigue life, 409–414
ground-air-ground cycle, 414
gust damage, 411, 413

safe life and fail-safe structures, 403–404
stress concentrations, 347, 404
thermal fatigue, 403

Fictitious or dummy load method, 116
Finite element method, seeMatrix methods
Flexibility method, 141–147
flexibility (influence) coefficient, 151

Flexural rigidity of a beam, 119
Flexural-torsional buckling of thin-walled columns,

286
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Force, 5–6
body forces, 6
notation, 5
surface forces, 6

Function of structural components, see Structural components
of aircraft

Fuselage frames and wing ribs, analysis of, 619–630
Fuselages, analysis of, 577–585

G
General stress, strain and displacement relationships,

see Shear of beams
Glass, seeMaterials
Glass reinforced plastics (GRP), seeMaterials
Goodman diagram, 407
Gust loads, see Airframe loads, Fatigue

H
Hooke’s law, 29

I
Inelastic buckling, 259–263
columns, 259–263
reduced elastic modulus, 260
reduced modulus theory, 260–262
tangent modulus, 259
tangent modulus theory, 262

thin plates, 296–298
Instability of stiffened panels, 300–301
failure stress, 302–304
interrivet buckling, 301
wrinkling, 301

Inverse and semi-inverse methods for elasticity problems,
48–53

L
Laplacian operator, 67, 229
Load intensity, shear force and bending moment relation-

ships for a beam, 440–441
Loads on structural components, see Structural components

of aircraft
Local instability in plates, 299

M
Macauley’s method (singularity functions), 448–454
Materials of aircraft construction, 327–348
aluminum alloys, 327–329
composite materials, see Composite materials
creep and relaxation, 346–347
fatigue, see Fatigue
glass, 331
maraging steels, 330
plastics, 331

properties of materials, see Properties of materials
steel, 327, 330
strain hardening, 345
stress-strain curves, 341–345
testing of engineering materials, see Testing of engineering

materials
titanium, 330

Matrix methods, 169–210
application to statically indeterminate frameworks, 183
finite element method, 193–210
stiffness matrix for a beam element, 194–198
stiffness matrix for a quadrilateral element, 205–210
stiffness matrix for a triangular element, 198–205

flexibility (force) method, 169
matrix analysis of pin-jointed frameworks, 176–183
matrix analysis of space frames, 183–185
notation, 170–171
stiffness matrix, 170
idealization into beam elements, 188–189
for an elastic spring, 171–172
for two elastic springs in line, 172–175
for a uniform beam, 185–192

stiffness (displacement) method, 169
Membrane analogy, 77–79
Modulus of elasticity (Young’s modulus), 29
Modulus of rigidity (shear modulus), 30
Mohr’s circle of strain, 28
Mohr’s circle of stress, 16

N
Neuber beam, 513–514
Neutral axis, 424, 426
Neutral plane
of a beam, 423, 424
of a plate, 219

P
Parallel axes theorem, 456
Perpendicular axes theorem, 457
Plane strain, 25
Plane stress, 9
Plates, thin, 219–250
bending and twisting of, 223–227
principal curvatures, 225
principal moments, 225

bending of plates having a small initial curvature, 240–241
buckling of plates, 293–296
buckling coefficient, 295, 296

combined bending and in-plane loading of a rectangular
plate, 236–240

governing differential equation, 239
energy method, 241–249
potential energy of a transverse load, 243
potential energy of in-plane loads, 244–248
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Plates, thin, energy method (continued)
Rayleigh–Ritz method, 241, 248
strain energy due to bending and twisting, 241–243

experimental determination of critical load (Southwell
plot), 298

failure stress in plates and stiffened panels, 302–304
inelastic buckling of plates, 296–298
buckling coefficients, 297

instability of stiffened panels
interrivet buckling, 301
wrinkling, 301

local instability, 299
pure bending, 219–222
anticlastic surface, 222
flexural rigidity, 221
neutral plane, 219
synclastic surface, 222

subjected to a distributed transverse load, 227–236
built-in edge, 231
differential equation for deflection, 227, 232
Fourier series for deflections and loads, 232–233
free edge, 231–235
Laplace operator, 229
simply supported edge, 230

tension field beams, 304–320
complete diagonal tension, 305–311
diagonal tension factor, 311
incomplete diagonal tension, 311–314
loading or buckling stress ratio, 312
post buckling behaviour, 314–320

Point of zero warping in an open section beam, 518, 519
Poisson’s ratio, 29
Potential energy, see Energy methods
Primary instability, 253
Primary warping in an open section beam, 516
Principal strains, 27, 28
Principal stresses, planes, 14, 16
Principle of superposition, 151
Principle of the stationary value of the total complementary

energy, 113–114
application to deflection problems, 114–122
application to the solution of statically indeterminate

systems, 122–138
Principle of the stationary value of the total potential energy,

148–151
Principle of virtual work, 87
Principles of stressed skin construction, 327–348
materials, seeMaterials

Product second moment of area, 460–461
Properties of materials, 333–348
anisotropic materials, 334
brittleness, 333
creep and relaxation, 346–347
ductility, 333
elastic materials, 333

fatigue, see Fatigue
isotropic materials, 334
orthotropic materials, 334
plasticity, 334
strain hardening, 345

R
Rayleigh–Ritz method, 241, 248, 270–274
Reciprocal theorem, 151–155
Reduced modulus theory, 260–263
reduced elastic modulus, 260

S
Safe life structures, see Fatigue
Second moment of area, 456–466
Secondary instability, 253
Secondary warping in an open section beam, 516
Self-straining trusses, 145–147
Shear center, see Shear of beams
Shear flow, see Shear of beams, Torsion of beams
Shear of beams, 479–496
center of twist, 482–483
general stress, strain and displacement relationships,

479–483
shear flow, 480, 483, 484
shear of closed section beams, 488–496
shear center, 493–496
shear flow, 490–491
twist and warping, 491–493

shear of open section beams, 483–488
shear center, 483, 486–488

Singularity functions (Macauley’s method), 448–454
Slenderness ratio for a column, see Columns
Southwell plot, 265, 298
St. Venant’s principle, 53–54
Stability of beams under transverse and axial loads

(beam-columns), 266–270
Strain, 20–23
determination of strains on inclined planes, 25–27
longitudinal (direct) strain, 21
Mohr’s circle of strain, 28
plane strain, 25
principal strain, 27, 28
shear strain, 21–23

Strain energy, 111, 112
in simple tension, 112

Strain gauge rosette, 37
Stress
complementary shear stress, 8
components at a point, 6
definition, 4
determination of stresses on inclined planes, 10–14
direct (normal) stress, 4
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maximum shear stress at a point, 15
Mohr’s circle of stress, 16–20
notation for stresses, 5–6
plane stress, 9
principal stresses, planes, 15, 16
resultant stress, 5
shear stress, definition, 4

Stress analysis of aircraft components, 561–574
fuselage frames and wing ribs, 619–630
fuselage frames, 624–625
principles of stiffener/web construction, 619–624
wing ribs, 625–630

fuselages, 577–585
effect of cut-outs, 584–585
in bending, 577–578
in shear, 578–581
in torsion, 581–583

wing spars and tapered box beams, 561–574
beams having variable stringer areas, 570–574
open and closed section beams, 565–570
tapered wing spar, 561–565

wings, 587–612
bending of, 588–589
cut-outs in wings, 605–612
deflections, 603–604
shear, 593–599
shear center, 599
tapered wings, 599–602
three-boom shell, 587–588
torsion, 590–593

Stress functions, 47–48
Stress-strain relationships, 28–36
Structural components of aircraft, 351–370
connections, 363–370
eccentrically loaded riveted joints, 367–369
group riveted joints, 366–367
joint efficiency, 366
simple lap joint, 363–366
use of adhesives, 369–370

fabrication of structural components, 359–363
integral construction, 361
sandwich panels, 361, 362
subassemblies, 360

function of structural components, 354–360
fuselages, 355
monocoque structures, 354
semi-monocoque structures, 354
tailplanes, 355
wings, 355

loads on components, 351–354
aerodynamic center , 353
body forces, 351
center of pressure, 352
drag, 352
ground loads, 351

surface forces, 351
wing lift, 352

Structural idealization, 537–556
effect of idealization on the analysis of open and closed

section beams, 541–552
alternative method for shear flow distribution, 551–552
bending of open and closed section beams, 541–542
deflections of open and closed section beams, 553–556
shear of closed section beams, 548–551
shear of open section beams, 542–548
torsion of open and closed section beams, 552

idealization of a panel, 538–540
principle, 537–538

Structural instability, 253–286
columns, see Columns
thin plates, see Plates

Surface forces, 6
Symmetric maneuver loads, see Airframe loads
Symmetrical bending, see Bending of open and closed section

thin-walled beams
Synclastic surface, 222

T
Tangent modulus theory, 262
tangent modulus, 259

Temperature effects, 34–36, 156–158, 466–471
in beams, 466–471
mechanical strain, 34
thermal strain, 34
total strain, 34

Tension field beams, see Plates
Testing of engineering materials, 334–340
bending tests, 336–338
modulus of rupture, 337

compression tests, 335
hardness tests, 338, 339
impact tests, 339
shear tests, 338
stress-strain curves, 340
aluminum, 342, 344
brittle materials, 344
composites, 344–345
mild steel, 341

tensile tests, 334
actual stress, 335
nominal stress, 335

Torsion of beams, 503–521
of closed section beams, 503–514
condition for zero warping (Neuber beam), 513–514
displacements, 504–513
mechanics of warping, 511–513
rate of twist, 506
shear flow (Bredt-Batho theory), 504
warping, 506–514
warping in a rectangular section beam, 507–513
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Torsion of beams (continued)
of open section beams, 514–521
point of zero warping, 518
primary warping, 516
rate of twist, 514
secondary warping, 516
shear lines, 515
shear stress distribution, 514
torsion constant, 514
warping of cross-section, 515–516

Torsion of solid sections, 65–82
membrane analogy, 77–79
torsion of a narrow rectangular strip, 79–82
warping of a thin rectangular strip, 81

Prandtl stress function solution, 65–75
Laplacian operator, 67
lines of shear stress, 71
polar second moment of area, 73
torsion constant, 71
torsion of a circular section bar, 72
torsion of an elliptical section bar, 73, 74
torsional rigidity, 71
warping displacement, 70

St. Venant warping function solution, 75–77
torsion constant, 77
warping function, 76

Total potential energy, 147–148
Twist and warping in closed section beams, 491–493
Twist and warping in open section beams, 514–521
Two-dimensional problems in elasticity, 45–60
bending of an end-loaded cantilever, 55–60
biharmonic equation, 48
displacements, 54–56
inverse and semi-inverse methods, 48–53
St. Venant’s principle, 53–54
stress functions, 47–48

U
Unit load method, 138–141
Unsymmetrical bending, see Bending of open and closed

section thin-walled beams

V
Virtual work, 85–107
applications of principle, 99–107
principle of virtual work, 87–91
for a particle, 87–88
for a rigid body, 88–91

use of virtual force systems, 98
virtual work in a deformable body, 91
work done by external force systems, 97–98
work done by internal force systems, 92–97
axial force, 92–93
bending moment, 95–96
hinges, 96
shear force, 94
sign of, 96–97
torsion, 96

work, definition, 85, 86

W
Warping
in a closed section beam, 491–493
in a solid section beam, 70
in an open section beam, 515–516
of a thin rectangular strip, 81
St. Venant’s warping function, 75–77

Wings, analysis of, 587–612
Wings, spars and box beams, analysis of, 561–574
Work, definition, 85, 86

Y
Young’s modulus, 29
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